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ABSTRACT: Biomolecular binding kinetics including the association (k,,) and
dissociation (k) rates are critical parameters for therapeutic design of small-
molecule drugs, peptides, and antibodies. Notably, the drug molecule residence
time or dissociation rate has been shown to correlate with their eflicacies better
than binding affinities. A wide range of modeling approaches including quantitative
structure-kinetic relationship models, Molecular Dynamics simulations, enhanced
sampling, and Machine Learning has been developed to explore biomolecular
binding and dissociation mechanisms and predict binding kinetic rates. Here, we
review recent advances in computational modeling of biomolecular binding

kinetics, with an outlook for future improvements.

1. INTRODUCTION

Life processes are critically dependent on the formation of
biomolecular complexes, particularly the protein-small mole-
cule, protein—peptide, and protein—protein/antibody struc-
tures. Biomolecular binding plays a key role in many
fundamental biological processes.’ Accurate characterization
of biomolecular binding thermodynamics and kinetics is key
for therapeutic design.”~* The ligand free energy and kinetics
are related as AGy,giny = —RT In ky with ky = (ky/k,,)- Tt is
possible for ligands with similar binding free energy to exhibit
distinct binding and dissociation kinetic rates. Particularly,
drug residence time or dissociation rate appears to correlate
with in vivo drug efficacy better than the binding free
energy.”~'” Therefore, understanding the receptor—ligand
binding and unbinding process and accurate predictions of
ligand binding kinetic rates could be valuable for drug
discovery and development. It is desirable to decrease the
ligand dissociation rate or increase its residence time to
improve its efficacy.'’ For example, Li et al.'” optimized the
donepezil drug to compound 12 through adding two F atoms
to decrease the dissociation rate from its target acetylcholi-
nesterase, which demonstrated significantly improved efficacy
and a lower effective dose than that of donepezil. With
remarkable theoretical and technical developments, increasing
numbers of experimental and computational methods are
available for calculating the biomolecular binding kinetic
rates.””'*7?° However, it remains challenging for both
experimental and computational approaches to accurately
predict biomolecular binding kinetic rates with high
throughput.

In this review, we will first briefly describe available
experimental techniques for determining biomolecular binding
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kinetic rates. We will then discuss computational approaches to
predict the biomolecular binding kinetics published during
2010—2022, with a focus on the Molecular Dynamics (MD)
and enhanced sampling methods, including Weighted
Ensemble,”' ™ milestoning,24 simulation enabled estimation
of kinetic rates (SEEKR),”>>” Gaussian accelerated Molecular
Dynamics (GaMD),***” Metadynamics** ™" and its combina-
tion with Machine Learning (ML),”® Markov State Modeling
(MSM),””~*' Random Acceleration Molecular Dynamics
(RAMD),*”™** scaled MD,"”~*" and so on. These computa-
tional approaches have emerged as rapidly evolving techniques
for studying biomolecular binding kinetics.

2. AVAILABLE EXPERIMENTAL TECHNIQUES TO
MEASURE BINDING KINETICS

Most experimental techniques'***** for determining biomo-
lecular binding kinetic rates are mainly relying on monitoring a
specific signal over time during the binding and dissociation
processes. According to signal source, experimental methods
could be generally divided into two classes: assays with and
without a label for detection."* Radio and spectroscopic
labeling are the main choices for labeling assays. A radiolabel
essentially comes from the presence of radioactive isotopes in
the molecule, which could emit special radiation when they
decay to more stable states. In radiometric binding assays,
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Table 1. Databases of Biomolecular Binding Kinetics

database description

KDBI It includes 19,263 entries, which provide experimentally verified kinetic rates for protein—
protein/DNA/RNA/ligand and ligand-DNA/RNA interactions.

BindingDB It focuses on protein—ligand interactions, including ~1.1 million compounds and 8900
targets.

KOFFI It includes 1705 entries and a rating system to measure the quality of experimental data.

PDBbind The k,; data set includes 680 entries with protein-small molecule complex structures.

SKEMPI It focuses on protein—protein interactions, which record 713 binding association and
dissociation rates upon mutation.

dbMPIKT It focuses on protein—protein interactions, which contain 5291 protein binding association

and dissociation rates upon mutation.

web site

http://xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp

https://www.bindingdb.org/rwd/bind/index.jsp

The webpage of binding kinetic rates: https://
bindingdb.org/rwd/bind/ByKlLjsp?specified=Kn

http://koffidb.org/
http://www.pdbbind.org.cn/
http://life.bsc.es/pid/mutation_database/

http://deeplearner.ahu.edu.cn/web/dbMPIKT/

ligands are tagged to follow the time course of their binding to
targets, thus allowing for the spontaneous measurement of
binding kinetic rates.’”' In the spectroscopy-based assays,
ligands are labeled with fluorophore groups. After absorbing a
certain wavelength’s light, fluorophore groups could emit
characteristic light, allowing for detecting the binding and
dissociation processes.”” The fluorescent resonance energy
transfer (FRET) is one popular spectroscopy based ap-
proach.*” The labeling approach is often less efficient as it
requires the labeling of the ligand, which is labor intensive and
could be challenging for certain drugs. For the label free
approaches, surface plasmon resonance (SPR) is one of the
most widely used methods, especially in characterizing the
biomolecular binding kinetics of pharmaceutical interest.” High
throughput is one important advantage of SPR, which is often
used to analyze a series of ligands.

With developments of experimental techniques, recent years
have seen significantly increasing numbers of biomolecular
binding kinetic data, including the protein-small molecule,
protein—peptide, and protein—protein binding kinetic rate
constants. Many experimental binding kinetic rates have been
collected in different publicly accessible databases. A number
of databases as listed in Table 1 are useful for exploring
biomolecular binding kinetics, including the kinetic data of
biomolecular interactions (KDBI),>® BindingDB,** kinetics of
featured interactions (KOFFI),*> PDBbind,*® structural data-
base of kinetics and energetics of mutant protein interactions
(SKEMPI),”” kinetic and thermodynamic database of mutant
protein interactions (dbMPIKT),*” and so on.*”’

KDBI*® is developed to provide experimentally verified
binding kinetic rates for interactions involving proteins and
nucleic acids (RNA and DNA). It includes 19,263 entries of
10,532 distinctive biomolecular interactions. The binding
kinetic data includes protein—protein/DNA/RNA/ligand and
ligand-DNA/RNA interactions. BindingDB>* is one widely
used database for exploring protein-small molecule inter-
actions, containing ~1.1 million compounds and 8900 targets
with clearly defined quantitative measurement for binding
affinities and kinetic rates. BindingDB provides a special kinetic
database via link https://bindingdb.org/rwd/bind/ByKI.
jsp?specified=Kn. The data of BindingDB are extracted from
published literature and other databases such as PubChem,
CheEMBL, PDSP K, and CSAR. Additionally, BindingDB
provides an option for experimentalists to directly deposit their
data. KOFFI™ is developed to provide binding kinetic rates
along with experimental protocol. It includes 1705 individual
entries. Notably, it contains a rating system to assess the
quality of experimental data. A user can perform a direct search
within the Anabel’s KOFFI database and evaluate the quality of
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their binding data. PDBbind*® was initially developed for
collecting binding affinity data and complex structures for
developing docking score. In 2022, it released a subdatabase
(k, i set) containing 169 entries of protein-small molecule
dissociation rates. One advantage of PDBbind is the availability
of the protein-small molecule complex structures, which could
be convenient for molecular modeling. SKEMPI®” and
dbMPIKT*® mainly focus on protein—protein interaction
(PPI). SKEMPI’” contains 713 protein—protein binding
kinetic rates upon mutation. dbMPIKT® contains 5291
entries of protein—protein binding kinetic rates involving
mutation. In summary, developments of experimental
techniques and increasing biomolecular binding kinetic data
collected in the databases will greatly facilitate modeling of
biomolecular binding kinetics and therapeutic design.

3. QUANTITATIVE STRUCTURE-KINETIC
RELATIONSHIPS

Optimal kinetic parameters for biomolecular binding could
significantly improve drug efficacy. For that reason, several
molecular modeling techniques have been developed to predict
biomolecular binding kinetic rates and derive quantitative
structure-kinetic relationships (QSKRs).®” While these meth-
ods are often based on experimental structures, many of them
consider each biomolecular complex with only one single
structure.”” Nunes-Alves et al.”’ modified the COMparative
BINding Energy (COMBINE) analysis, which uses holo
structure to predict binding parameters, to include extra
options of using multiple protein-small molecule complex
structures. They did so by docking small molecules to a protein
conformational ensemble obtained from MD simulations.
Specifically, the full data set for COMBINE analysis consisted
of 33 inhibitors of p38 MAP kinase, which were chosen given
availability of experimental k. values and experimental
structures of the inhibitor bound to p38 MAP kinase or to
other kinases in the DFG-out conformation state. Twenty-two
and eleven inhibitors were used for training and testing in the
COMBINE analysis, respectively. The first step in the
COMBINE analysis involved modeling of the two sets of
structures and derivation of COMBINE analysis models. After
energy minimization of the complex structures, interaction
energy components were obtained with the AMBER ft14SB
force field to describe bonded and nonbonded interactions.
Weights to scale the protein-small molecule interaction
energies were obtained using partial least-squares regression.
To account for multiple structures, the COMBINE was
modified to retrieve an average response using N structures
for each protein-small molecule complex, in which each
structure was treated independently during regression to
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obtain weights for interaction energies. Here, exponential or
arithmetic averages could be used

N
com, 1 —log I’
log )™ = —log — g
(Og )exp 0g N Z ¢
j=1 (1)
1 < .
(og 05 = ; Rog
j=1 (2)

where (log I)¢* and (log I)3i¥ were the predictions for the
response variable using exponential and arithmetic averages, j
was the index of the structure used, log I was the prediction
made using the jth structure, and N was the number of
structures to describe one protein-small molecule complex. In
one of the two structure sets used for the COMBINE analysis,
each complex was represented using one experimental crystal
structure. In another set, each complex was represented using
10 structures from ensemble docking.’” Although the
COMBINE model obtained with multiple structures from
ensemble docking took protein—ligand flexibility into consid-
eration, the predictive power was lower than the model from a
single, energy-minimized crystal structure for each protein—
ligand complex. Nevertheless, the incorporation of protein—
ligand flexibility highlighted additional important protein—
ligand interactions that led to longer residence time.

In 2018, Ganotra and Wade applied COMBINE analysis to
derive QSKRs for the dissociation rates (kgff) of inhibitors of
HSP90 and HIV-1 protease.61 Protein-specific scoring
functions were derived by correlating k., with a subset of
weighted interaction energy components determined from
energy minimized biomolecular complex structures. A set of
3D structures of protein—ligand complexes was modeled and
energy minimized. Protein—ligand interaction energies were
first calculated, then partitioned, and subjected to partial least-
squares projection to latent structures (PLS) regression. A
statistical model was derived to correlate the activity of interest
to weighted selected components of the protein—ligand
interaction energy decomposed on a per residue basis, based
on the following equation

log(k) = Z wAu, + C

i=1

()

where k was the rate constant of interest, and Au; was per
residue terms of the ligand—receptor interaction energy,
calculated for n residues. The coeflicients w; and constant C
could be determined from PLS regression. The data set used
for the COMBINE analysis of HSP90 and HIV-1 protease
inhibitors consisted of 70 and 36 compounds, respectively.
Experimental k, values ranged from 0.0001 to 0.83 s ~! for the
HSP90 inhibitors and 0.00022 to 83.3 s~ for the HIV-1
protease inhibitors. For the COMBINE analysis, 207
Coulombic and 207 Lennard-Jones (LJ) interaction energy
terms were calculated for the HSP90 inhibitors, and 198
Coulombic and 198 LJ energies were calculated for the HIV-1
protease inhibitors. The resulting COMBINE models for koff
rates had very good predictive power (R =0.80 and Q%0 =
0.69 for HSP90, and R? = 0.94 and Q%0 = 0.70 for HIV-1
protease). They could also identify contributing protein—
ligand interactions for the binding kmetlcs

In another study, Schuetz et al.’” performed matched
molecular pair (MMP) analysis on data sets assembled from
the Kinetic for Drug Discovery database, which included 3812
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small molecules annotated to 78 different targets from five
diverse protein classes, including G-protein-coupled receptors
(GPCRs), kinases and other enzymes, heat shock proteins
(HSPs), and ion channels. The kinetic data set (KIND)
contains complex structures along with their respective binding
kinetic data (k,, k.5 Kp). To elucidate the impact of small
structural changes on the binding kinetic behavior, a total of
395 MMPs extracted from KIND were performed. The pairs
were made of two molecules possessing identical scaffolds and
showing minor chemical modifications. This data set included
various chemical modifications, with the top 20 representing
less than 65% of the entire data set. The most common
modification, which was replacement of a hydrogen atom by a
methyl group, comprised around 15%. To demonstrate that
changes in a molecule’s polarity are the major factor for the
alteration of binding association rate k,,, the authors focused
on analyzing the top 20 MMPs with highest differences in k,,
values. For 16 out of 20 MMPs, a substitution that increases
polarity was observed. The largest differences in k,, were found
with the introduction of a charged moiety, leading to a
decrease of 0.5—2.0 orders of magnitude. The decrease in k,,
might come from electrostatic repulsion and/or desolvation
penalties. Conversely, an improvement in binding affinity was
observed if modifications established additional interactions in
the final bound complexes. The dissociation rate kg was also
analyzed following the same protocol for k,,. In contrast to k,,,
the change of molecular polarity in the MMPs did not produce
a consistent shift in k.

In order to explore molecular details of biomolecular
binding processes on a large scale, Chiu et al® recently
integrated coarse-grained normal-mode analysis (NMA) with
multitarget machine learning (MTML) to address the above
challenge and tested their method using the HIV-1 protease as
a model system. The workflow included four phases. In phase
1, the 3D complex structure of the ligand-bound HIV-1
protease was built. Ligands without experimental structure
were docked into the HIV-1 protease using the eHiTS
software. In phase 2, residues in the ligand-binding site were
identified. Coarse-grained NMA was performed for both apo
and holo structures. The authors defined relative movement of
ligand—residue (RMLR) as the dot product of the ligand
displacement vector after normalization and the residue
displacement vector and relative movement of residue—residue
(RMRR) as the dot product of the displacement vectors of a
residue for the apo and holo structures. Therefore, RMLR and
RMRR could be derived from the NMA and describe the
conformational dynamics impact of ligand binding on the
residues in the binding site. In phase 3, five principal data sets
were constructed. Pairwise decomposition of the residue
interaction energy was computed by minimizing 39 ligand-
bound HIV-1 complexes with NAMD simulations using the
generalized Born implicit solvent (GBIS) method. The final
simulation conformations were used to compute the residue-
decomposed pairwise interaction energy (PIE), the van der
Waals energy (VDWE), and the electrostatic energy (EE)
between the ligand and protein residues. The energetic features
(PIE, VDWE, and EE) and conformational dynamics features
(RMRR and RMLR), along with experimentally determined
ko, and ko data, were used to train MTML models in phase 4
of the workflow. The model was evaluated regarding the
accuracies in the predictions of binding kinetic rate constants
ko, and k, using the following formula
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Figure 1. Number (A) and accuracy (B) of predictions of biomolecular binding kinetic rates obtained from MD simulations plotted over the years.
The protein—ligand, protein—peptide, and protein—protein complexes were plotted in squares, circles, and asterisks, respectively.

n Al
accuracy = —

E’ N )
where A; was the prediction accuracy for each case, and N was
the total number of cases. A; = 100% when both k,, and ks
were accurately predicted, and A; = 0% when neither was
correctly predicted. The ML algorithms are generally sensitive
to imbalances in the training data. In order to avoid the bias of
ML algorithms in handling an imbalanced small training data
set, the author discretized the log;q(k,y) and log;o(k,,) values
of 39 HIV-1 protease inhibitors into four different binary
classes, with the labels (0,0), (0,1), (1,0), and (1,1) on the
two-dimensional space of log;y(k,,) and logw(kgff), using the
criteria of logm(koff) = —2 and logo(k,,) = 5.6, where class
(0,1) is enriched with five FDA-approved drugs. Then, the
author evaluated the prediction accuracy of the combined four-
class log;o(k,,)/10g1o(kyy). They found that the prediction
accuracy in their models was higher than that of the random
guess. The model was further evaluated in high-throughput
screening of molecules with in vivo drug activity on the basis of
k., and kg using the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC). The
computational models were found not only to recapitulate the
results from MD simulations but also to accurately predict
protein—ligand binding kinetic rates, with an accuracy of
74.35% when combined with energy features. In addition, the
integrated models showed that the coherent coupling of
conformational dynamics and thermodynamic interactions
between the receptor and ligand played a critical role in
determining protein—ligand binding kinetic rates.

In summary, with increasing numbers of available exper-
imental binding kinetic data and advances in the modeling
approaches, the built QSKR will become more accurate and
allow for high-throughput screening, which is very helpful at
the early stage of drug design.

4. MOLECULAR DYNAMICS AND ENHANCED
SAMPLING METHODS FOR PREDICTING BINDING
KINETICS

MD is a powerful technique for simulations of biomolecular
structural dynamics.”*”® The accessible time scale of conven-
tional MD (cMD) has reached hundreds of microseconds
thanks to remarkable advances in computing hardware (e.g.,
the Anton supercomputer and GPUs) and algorithm develop-
ments.”>”7° Notably, the latest Anton3 ° has enabled
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hundreds-of-microseconds ¢MD simulations per day for
ATPase and Satellite Tobacco Mosaic Virus (STMV) with a
total number of atoms ranging from 328 K to 1,067 K. The
cMD simulations have been widely applied to investigate
biomolecular binding processes.”*”’® However, it is still
challenging for cMD to simulate re7petitive biomolecular
dissociation and rebinding 2};rocesses. 972 In this regards,
enhanced sampling methods™’~*’ have been developed to
simulate biomolecular binding and dissociation processes and
predict the associated binding kinetic rates. Recent years have
seen a significant increasing numbers of studies on predicting
biomolecular binding kinetic rates using MD simulations
(Figure 1A). To evaluate the accuracy of simulation predicted
kinetic rates, we define the prediction errors of binding and
dissociation kinetic rates as

P

on )

Alogk,, = log ki — log

A log kg = log kjfifm — log k,# (s)
where simulation predicted binding (k") and dissociation
(k) rates are compared with experimentally determined
binding (k,?) and dissociation (kff) rates. Most values of the
A log k are in the range of —1 to 1 (Figure 1B), suggesting
good prediction accuracy obtained from MD simulations. Due
to the difficulty of prediction in ligand binding kinetic rates, A
log k in a range of —2 to 2 is acceptable for comparing
computational predictions with experimental values. In the
next sections, we will discuss recent applications of the above-
mentioned methods in exploring biomolecular binding kinetics
for distinct protein-small molecule, protein—peptide, and
protein—protein binding systems, while very few simulation
studies have been carried out about binding kinetics of nucleic
acids.

Protein-Small Molecule Binding Kinetics. Compared
with slower ligand dissociation process, ligand binding is much
quicker, which allows cMD to capture the ligand binding
process and predict the binding association rate (k,,). For
example, spontaneous binding of the Dasatinib drug to its
target Src kinase was observed in a total of ~35.0 ys cMD
simulations performed by Shan et al.”® The estimated binding
association rate (k,,) was 0.19 X 10" M~' s, being highly
consistent with the experimental value of 0.5 X 107 M~ s™%,
The same system was used to test a novel approach-
unag§regated unbiased MD (UUMD) developed by Sohraby
et al.”* In contrast to the r(;pulsion added to the special atom
in the ligand by Shan et al,, ° the repulsion in the UUMD was
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added to a virtual interaction site in the ligand to avoid s™', 310 + 130 s'), being highly consistent with the

aggregation. Notably, the UUMD could capture multiple
independent Dasatinib binding events within nanosecond
simulations. The predicted binding association rate (k,,) was
0.75 X 10" M™' s7', being highly consistent with the
experimental data (Table 2). It is worth noting that no
dissociation event was observed in the c¢cMD simulations,
prohibiting calculation of ligand dissociation rate (k).

Coarse-grained models were developed for MD simulations
to reduce the demands for computational resources and extend
the simulation time scale.”*”” Based on the Martini coarse-
grained model, Dandekar et al.”’ captured spontaneous
binding of benzamidine to the trypsin binding pocket from
bulk solvent. Based on 426 us MD simulation data, they
predicted the binding kinetic rates of (k,, k) at (36.8 x 10
M™ 57!, 69 X 10° s7'). The corresponding experimental
values were (2.9 X 107 M™' 57!, 600 s7'). Therefore, the
predicted k,, value was ~13-fold higher than the experimental
data. However, a large derivation was observed between the
predicted and experimentally determined k,,

Multiscale computational approaches have been developed
to improve the efficiency and accuracy of ligand binding
thermodynamics and kinetics calculations.”*”*'’ For example,
SEEKR™™ is a multiscale simulation approach combining
MD, Brownian dynamics, and milestoning for predicting
protein—ligand binding association and dissociation rates.
The recently developed version of SEEKR with Markovian
milestoning with the Voronoi tessellations approach has been
shown to estimate accurate binding kinetic rates with the
simulation time reduced by a factor of ~10 in comparison to
the original SEEKR.” Using the trypsin-benzamidine model
system as an example, the SEEKR® and its latest version
SEEKR2% predicted the binding kinetic rates of (k,, ko) at
(12+05%x 100 M s7, 174 + 9 s7!) and (2.4 + 0.2 X 107
M~ 57!, 990 + 130 s7'), respectively, being highly consistent
with the corresponding experimental data of (2.9 X 10" M~}
57!, 600 s7'). Particularly, SEEKR2”” was recently applied to
predict the dissociation rates of a number of inhibitors for the
Janus Kinase (JAK) system. The predicted values k,; agreed
very well with the experimental data with A log k less than 1
(Table 2).”

The milestoning method”* has been applied to predict the
dissociation rate of the Imatinib drug to Abl kinase. Based on
the total of 1.043 us simulations, the value of k. was predicted
as 18 s7', being highly consistent with the experimental value
of 25 + 6 s7'. Weighted Ensemble”’ and MSM®” have been
developed to improve prediction of ligand binding kinetic rates
based on a large number of short cMD trajectories. In the
trypsin-benzamidine system, the dissociation rate (k, f) of
2,660 s~! was predicted with one weighted ensemble”" of a
total amount of 8.75 ps cMD simulations, being ~4.43 times
faster than the experimental value. Another weighted ensemble
combined with milestoning85 of a total of 048 us cMD
simulations was able to predict the T4 lysozome (T4L)-
benzene binding kinetic rates of (k,, k) at (0.53 + 0.08 X
10" Mt s7, 791 + 197 s71), being highly consistent with the
corresponding experimental value of (0.08—0.1 X 10’ M~" 57,
950 + 200 s~'). MSM was able to simultaneously predict the
ligand association and dissociation rates through longer
aggregated cMD simulations. For example, one MSM built
with 59 pus cMD simulation data was able to accurately predict
T4L-benzene binding kinetic rates."’ The predicted binding
kinetic rate values of (k,, ko) were (0.21 + 0.09 X 10" M~
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experimental data of (0.08—0.1 X 10" M™! s™%, 950 + 200
s™1). MSM built with S0 us cMD simulation data was used to
predict the binding kinetic rates of the trypsin-benzamidine
system.”® The predicted values of (k,,, ko) were (15.0 £ 2.0 X
10" M' 57, 9.5 + 3.310* s7'), being in line with the
experimental values of (2.9 X 10" M~ 57, 600 s™"). However,
these calculations required very expensive computational
resources.

Metadynamics® >’ has been widely applied to investigate the
ligand binding kinetics. Multiple Infrequent Metadynamics
(InMetaD) simulations with a total of S ys trajectories were
performed to predict the pathways of benzamidine binding to
the trypsin and the binding kinetic rates. The predicted values
of (ko ko) were (118 £ 1.0 x 107 M~ s7}, 9.1 + 2.5 s71),
being smaller than the experimental values of (2.9 X 10" M~
s7!, 600 s7'). Similar smaller predicted values of (k,, k) at
(0.0035 + 0.002 x 10’ M™' s™!, 7 + 2 s7"') were observed in
another 12 us InMetaD simulations of benzene binding to
T4L.>> For the Src-Dasatinib system, one study with 7 us
InMetaD simulations’® was able to predict the ko value of
0.048 + 0.024 s™', being highly consistent with the
experimental value of 0.06 s~'. For the p38a-compound I
system, 6.8 us InMetaD simulations’” predicted the kof value
of 0.020 + 0.011 s™', being in line with the experimental value
of 0.14 s™'. Besides, accuracy of force field also plays a critical
role in predicting biomolecular binding kinetic rates. For
example, Capelli et al.”” applied two approaches to obtain the
RESP charges for the drug Iperoxo to predict its dissociation
rate in the M2 receptor. The two approaches included the one
with Amber standard methodology based on HF/6-31G*
(RESP-HF) calculations and another one based on DFT/
B3LYP (RESP-B3LYP) calculations. The simulations based on
RESP-HF charges failed to predict the k. rate due to the
unreasonable obtained transition state free energy. Simulations
with RESP-B3LYP charges enabled prediction of the k, value
at 3.7 £ 0.7 X 107* 57!, with an ~2 order of magnitude
deviation from the experimental value of 1.0 + 0.2 X 107> s™".
For the Src-Imatinib system, Haldar et al”® showed that
accounting for changes in charge distribution with QM/MM
calculations improved the Imatinib dissociation rate from
0.0114 s™! to 0.026 s, being more consistent with the
experimental value of 0.11 + 0.08 s™". Although Metadynamics
simulations have shown remarkable improvements in capturing
ligand binding and dissociation processes that occur over
exceedingly long time scales, users often face a challenge for
defining collective variables (CVs), which requires expert
knowledge of the studied systems.'”"'?* The simulations may
suffer from a “hidden energy barrier” problem if important CVs
were missed during the simulation setup.'”® To facilitate the
choice of CVs, ML has been incorporated into Metadynamics
simulations. Wang et al. developed a predictive information
bottleneck (PIB) approach to identify CVs and predict
biomolecular dissociation rates.”> The PIB was tested on the
system of benzene binding to T4L, and the predicted kg value
was 3.3 + 0.8 s, being consistent with other InMetaD
simulations but needing much shorter simulations.”’ In
another study, Filizola et al.>® developed a novel approach,
which combined InMetaD and ML methods including
automatic mutual information noise omission and reweighted
autoencoded variational Bayes to predict the dissociation
kinetic rates of two drugs (morphine and bruprenorphine) in
the p-opioid receptor. Based on ~6 us InMetaD simulations,
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Table 3. Summary of Computer Simulation Predicted Peptide Binding (k") and Dissociation (kjf{) Rates Compared with
Experimentally Determined Binding (k5¥) and Dissociation (kﬁ?f’) Rates

im

0)

oh kz}‘f o ) sim. time

system method (10’ M7ts7h) (s (107 MTsTh) o (s (us) Alog k,, A log ke force field year™

MDM2/ InMetaD 0.92 2.06 043 + 022 0.7 + 0.4 27 0.88 —047  AMBER ff99SB- 20207
Ps3 ILDN

MDM2/ MSM 0.92 2.06 0.019 2.5 831 0.88 0.08  AMBER f99SB- 2017'%
Ps3 ILDN-NMR

MDM2/ WE 0.92 2.06 7 120 0.88 AMBER ff99SB- 2016'%*
Ps3 ILDN

MDM2/ MSM 52.7 0.037 330 0.125—-1.13 500 0.80 0.53  AMBER ff99SB- 2017"!
PMI ILDN

SH3- Pep-GaMD 150 8900 4060 + 2260 1450 + 1170 3 143 —0.79  AMBER ff14SB 2020"°
1CKB

the predicted k, for the morphine and bruprenorphine were
0.057 + 0.005 s~ ' and 0.021 + 0.003 s/, respectively, being
within 1 order of magnitude difference from experimental
values of 0.0023 + 0.001 s™' and 0.0018 + 0.03 s™'. Very
recently, Narjes et al.*’ combined ML and a novel
Metadynamics approach, On-the-fly Probability Enhanced
Sampling (OPES) flooding, to investigate the binding of
benzamidine to trypsin. Based on a total of ~2.74 us OPES
simulations, they captured 55 benzamidine unbinding events
and predicted the k, value of 1560 s™!, being highly consistent
with the experimental data.

Scaled MD*'%*'% has been mainly used for the prediction
of k. as a scaling factor ranging from 0 to 1 is introduced in
the simulations to reduce the energy barrier to facilitate ligand
dissociation. For example, Schuetz et al.*” performed scaled
MD simulations to accurately predict the residence time and
drug dissociation gathways of different inhibitors in Hsp90. In
a recent study,'’® Bianciotto et al. applied scaled MD
simulations to predict the residence time and ligand unbinding
pathways for a set of 27 ligands of Hsp90, being highly
consistent with experimental data. The same group reported
another novel method based on adiabatic biased MD with an
electrostatics-like collective variable (elABMD)'" to explore
the protein—ligand dissociation process. elABMD correctly
ranked a series of ligands binding to glucokinase, being
consistent with available experimental data. In the RAMD
simulations, an additional random force is applied on the
ligand to promote its movement. Similar to scaled MD, RAMD
is mainly used in the ligand dissociation simulations to
qualitatively predict dissociation rates. In one recent study,
Nunes-Alves et al.** performed RAMD simulations to predict
ligand dissociation rates of T4L. The predicted kinetic rates
correlated well with experimental values for various systems
with different ligands, temperatures, and protein mutations.

GaMD***” is developed to apply a harmonic boost potential
to enhance sampling with reduced energetic noise. The boost
potential normally exhibits a near Gaussian distribution, which
enables proper reweighting of the free energy profiles through
cumulant expansion to the second order.”””” GaMD has been
successfully applied to simulate important biomolecular
processes, including protein/RNA folding,””'**'%" ligand/
protein/RNA binding,'**"'°~"'® and protein conformational
changes.''>"'”"'® However, it remained challenging to
accurately predict ligand binding kinetic rates through normal
GaMD.”™"" Recently, a “selective GaMD” algorithm, called
Ligand GaMD (LiGaMD),**” has been developed to allow
for more efficient sampling of ligand binding and dissociation
processes, which thus allows to accurately predict the ligand
binding kinetic rates. For the protein ligand binding system,
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the system contains ligand L, protein P, and the biological
environment E. The system potential energy could be
decomposed into the following terms

V(r) = Vp,b(’p) + V() + Vi (rg) + VPP,nb(rP) + Vipw(r)

+ VEE,nb(’E) + VPL,nb(rPL) + Vo, (rpp) + VLE,nb('LE) (6)
where Vp;, V; ), and Vi, are the bonded potential energies in
protein P, ligand L, and environment E, respectively. Vpp .,
Vi and Vig,, are the self-nonbonded potential energies in
protein P, ligand L, and environment E, respectively. Vp; .,
Vpguy and Vig,, are the nonbonded interaction energies
between P-L, P-E, and L-E, respectively. Ligand binding mainly
involves the nonbonded interaction energies of the ligand.
Therefore, LiGaMD selectively boosts on the ligand essential
energy term of Vligand(’) = View(re) + Verm(rer) + Vigu(rip)-
In order to facilitate ligand rebinding, another boost was added
to the remaining potential interaction of the system. Repetitive
binding and dissociation of small-molecule ligands were
captured in the LiGaMD simulations of host—guest and
protein—ligand binding model systems.*® Repetitive guest
binding and dissociation in the p-cyclodextrin host were
observed in hundreds-of-nanoseconds LiGaMD simulations.
Accelerations of ligand kinetic rates in LiGaMD simulations
were properly estimated using Kramers' rate theory.
Furthermore, microsecond LiGaMD simulations observed
repetitive benzamidine binding and dissociation in trypsin.
The benzamidine binding and dissociation rates were
predicted to be 1.15 + 0.79 X 10" M~"s™" and 3.53 + 1.41
s™!, respectively. These data were comparable to the
experimental values'*® of 2.9 x 10" M~'s™! and 600 s\
Very recently, five replicas of 5 us LiGaMD simulations
successfully captured repetitive Nirmatrelvir drug binding and
dissociation in the 3CLpro binding domain.'*" The Nirma-
trelvir binding and dissociation rates were predicted to be 3.20
+ 021 X 10° M™"s7" and 2.92 + 0.37 X 10%~/, respectively.
As there were no available experimentally determined binding
kinetic rates, the authors predicted the dissociation constant
(kp) from the predicted binding kinetic rates by equation kp =
kofi/ ko Notably, the predicted kp was 9.10 + 0.29 nM, being
highly consistent with the available experimental value of 7 + 3
nM,"** demonstrating high accuracy of the predicted binding
kinetic rates from LiGaMD simulations. A newer version,
LiGaMD2,”” was recently developed, in which a selective boost
potential was applied to both the ligand and protein residues in
the binding pocket to improve sampling of ligand binding and
dissociation. The predicted values of (k,, koff)123 in three
complexes of BEN bound to the L99A T4L (T4L:L99A-BEN)
and M102A T4L (T4L:M102A-BEN), and IND bound to the

https://doi.org/10.1021/acs.jctc.2c01085
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Table 4. Summary of Computer Simulation Predicted Protein—Protein Binding (k{") and Dissociation (kf,'f'}') Rates Compared
with Experimentally Determined Binding (k&) and Dissociation (kf,}}') Rates

exp im
0

n on

system method 10'M s kE(sTH (100 MTsTY

barnase- PPI-GaMD 60 8% 107¢ 217 + 138
barstar

barnase- WE 60 8% 107¢ 230 + 100
barstar

barnase- cMD 60 8% 107¢ 2.3
barstar

barnase- MSM 60 8% 107° 26.3-26.5
barstar

insulin cMD 11.4 14800 0.41
dimer

Ras—Raf- cMD 4.5 7.4 2.6
RBD

) sim. time A log A log

kg (s71) (us) kon ko force field year™
7.32 + 495 X 107° 12 0.56 —0.038 AMBER ff14SB  2022'"?
18 0.58 AMBER ff03* 2019%
440 —142 AMBER ff99SB- 2019

ILDN
3x107° 1700 —0.36 —0.42 AMBER f99SB  2017'%
294.8 —1.44 AMBER ff99SB- 2019

ILDN
117 —0.24 AMBER ff99SB-  2019%”

ILDN

L99A T4L (T4L:L99A-IND) were (7.42 + 4.81 X 10° M~
s, 1441 + 883 s7'), (9.57 + 629 x 10° M~'s7], 2011 +
1606 s71), and (2.99 + 2.87 x 10° M~1s7}, 3494 + 559 s71),
being highly consistent with the corresponding experimental
values of (0.8—1.0 x 10®* M~'s7!, 950 s7!), (3.0-5.0 x 10°
Mts7Y, 3000), and (0.7-1.0 x 10° M~'s7Y, 325 s71),
respectively.

Protein—Peptide Binding Kinetics. In comparison with
the extensively studied protein-small molecule binding,
protein—peptide binding studies are much less although an
increasing number of peptide-based drugs are being licensed to
market in recent years.'”*~'>° Large conformational changes of
peptides often occur during binding to target proteins, bringing
huge challenges for modeling.””'*” For example, the coupled
folding-upon binding mechanism has been observed in serval
systems of peptide binding to proteins.””'”” Only a few
number of computational approaches have been implemented
to predict peptide binding kinetic rates, including the
InMetaD,"*’ Weighted Ensemble,'*® MSM,"** and Peptide
GaMD (Pep-GaMD)"*° (Table 3).

InMetaD simulations with three CVs have successfully
predicted the peptide binding and dissociation rates for the
system of p53—MDM2.127 Based on 27 pus InMetaD
simulations,'*’ the predicted values of (k,, k) were (0.43
+0.22 X 10’ M~ 57, 0.7 + 0.4 s7'), being comparable to the
corresponding experimental values of (0.92 X 10" M~ s7,
2.06 s'). Weighted Ensemble of a total amount of ~120 us
cMD simulations in implicit solvent was performed on the
same p53-MDM2 system.'”® The predicted p53 binding
kinetic rate (k,,) was 7 s™', being highly consistent with the
experiential data of 2.06 s™'. Built on a total of 831 us cMD
simulations of p33 binding to the MDM2, the MSM'*
predicted accurate values of k,, and kg at 0.019 X 10" M1t
and 2.5 57/, respectively. However, the simulations needed for
building MSM are much longer than the Weighted Ensemble
and InMetaD simulations. Another MSM built on hundreds-
of-microsecond c¢cMD and Hamiltonian replica exchange
simulations has been implemented to characterize binding
and dissociation of the PMI peptide to the MDM2."*" The
PMI dissociation process is rather slow with the residence time
at the time scale of second. Therefore, ~50 ys Hamiltonian
replica exchange simulations were performed to predict the
dissociate rate. The predicted values of (k,, k) were (300 x
107 M7' s 0.125-1.13 s7Y), being comparable to the
corresponding experimental values of (52.7 X 10" M~ s7,
0.037 s71).
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Based on GaMD, we recently developed an algorithm called
peptide GaMD or “Pep-GaMD” that enhances sampling of
protein—peptide interactions."*’ As above-mentioned, a large
conformational change was involved in the process of peptide
binding to target proteins.””'>” Therefore, peptide binding
involves both the bonded and nonbonded interaction energies
of the peptide. Thus, the peptide essential potential energy is
defined as Vpeptide(r) = Vieo(ro) + Vigw(re) + Vpru(re) +
Vigm(rie). A selective boost was thus added to the peptide
essential potential to facilitate the dissociation of peptides in
the Pep-GaMD. In addition to selectively boosting the peptide,
another boost potential is applied on the protein and solvent to
enhance conformational sampling of the protein and facilitate
peptide rebinding.

Pep-GaMD'** has been developed to capture repetitive
peptide binding and dissociation processes, which allows us to
calculate the peptide binding free energies and kinetic rates. It
has been demonstrated on binding of three model peptides to
the SH3 domains,"**'*’ including “PPPVPPRR” (PDB:
1CKB), “PPPALPPKK” (PDB: 1CKA), and “PAMPAR”
(PDB: 1SSH). Repetitive peptide binding and unbinding
events were captured in independent 1 ps Pep-GaMD
simulations, allowing us to calculate peptide binding
thermodynamics and kinetics. The predicted values of both
binding free energies and kinetic rates from Pep-GaMD
simulations were in good agreement with available exper-
imental data. Particularly, the predicted peptide binding kinetic
rates of 1CKB were (4060 + 2260 x 10" M~'s™!, 1450 +
1170 s7'), being within 1 order of the experimental data of
(150 x 10" M~'-s7, 8900 s71).

Protein—Protein Binding Kinetics. PPIs play key roles in
many fundamental biological processes, including cellular
signal transduction, immune responses, and so on.' Moreover,
PPIs are implicated in the development of numerous human
diseases and served as important drug targets.'**”"*° PPIs
exhibit unique features, being distinct from the protein-small
molecule and protein—peptide interactions. The protein—
protein binding affinity is often stronger than that of the
protein-small molecule and protein—peptide interactions.
Protein—protein binding and unbinding processes often
occurred in significantly longer time scale. Particularly, the
protein—protein dissociation process could take place in a
much longer time scale, from seconds to even days. Tens of
microseconds cMD simulations were able to capture barnase
binding to barstar.”” Based on 28 successfully binding events
captured in a total of ~213 ps Anton cMD simulations with
the TIP4P2005 water model,®’” the predicted barnase binding

https://doi.org/10.1021/acs.jctc.2c01085
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Figure 2. Number (A) and accuracy (B) of predicted biomolecular binding kinetic rates using different MD techniques, including Metadynamics
(MetaD), Markov State Models (MSM), Gaussian accelerated MD (GaMD), conventional MD (cMD), Weighted Ensemble (WE), simulation
enabled estimation of kinetic rates (SEEKR), coarse-grained MD (CGMD), and a combination of Metadynamics and Machine Learning (MetaD
+ML). The protein—ligand, protein—peptide, and protein—protein complexes were plotted in squares, circles, and asterisks, respectively.

rate (k,,) was 6 X 10" M™' s7!, being in line with the
experimental value of 60 X 10" M~" s™'. Fewer barnase binding
events (24) with a slower predicted binding rate (2.3 X 10’
M™ s7') were observed with the the TIP3P water model
(Table 4). Additionally, Pan et al.”” successfully predicted the
binding kinetic association rates of another two systems of
insulin dimerization and Ras binding to the Ras-binding
domain of c-RAF-1 (Ras-Raf-RBD). Based on 6 successful
binding events among the total of 294.8 us cMD simulations,
the predicted association rate (k,,) of the insulin dimerization
was 0.41 X 10’ M~ ":s™!, being comparable to the experimental
value of 11.4 x 10 M~'s™! (Table 4). For the Ras-Raf-RBD
system, 117 us c¢cMD simulations successfully captured 7
binding events and predicted the k,, value of 2.6 X 10’ M~"
s~!, being highly consistent with the experimental data of 4.5 X
10" M~"s! (Table 4). However, it remains challenging to
simulate the protein dissociation with cMD.?”

Weighted Ensemble® of a total of ~18 s cMD simulations
was able to capture 203 barnase binding events and accurately
predict the barnase-barstar binding rate constant (k,,) of 23 +
10 X 10" M~1s™! (Table 4). Plattner et al."*” performed high
throughput MD simulations of the barnase binding to barstar
to build MSM. A total of 1700 us cMD simulations with 1,892
independent replicas starting from an unbound state captured
74 barnase binding events. Another set of 300 ys adaptive MD
simulations captured 16 and 10 times barnase binding and
dissociation events, respectively. Based on the total of 2,000 us
simulation data, the obtained MSM was able to predict
intermediate structures, binding energies, and kinetic rates that
were consistent with experimental data'>” (Table 4).

Recently, we developed a selective PPI-GaMD method' " to
simulate repetitive protein binding and dissociation in order to
calculate protein binding free energies and kinetics. The PPI
simulation system consists of a ligand protein L, a target
protein P, and a biological environment E. In PPI-GaMD, a
selective boost potential is added to the nonbonded protein—
protein interaction energy Vpr ;. Another boost potential is
applied on the remaining potential energy of the system to
enhance conformational sampling of the proteins and facilitate
protein diffusion and rebinding.''” PPI-GaMD''"* has been
demonstrated on the model system of barnase binding to the
barstar. Six independent 2 ps PPI-GaMD simulations have
successfully captured repetitive barstar dissociation and
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rebinding events. Three to six binding and dissociation events
were observed in each individual PPI-GaMD simulation. The
barnase binding free energy predicted from PPI-GaMD was
—17.79 kcal/mol with a standard deviation of 1.11 kcal/mol,
being highly consistent with the experimental value of —18.90
keal/mol."*® Additionally, the PPI-GaMD simulations allowed
us to calculate the protein binding kinetics. The average k,,
and k, were predicted as 21.7 & 13.8 X 10* M~'s7! and 7.32
+ 495 x 107¢ s7L, being consistent with the corresponding
experimental values of 6.0 X 10° M™":s™" and 8.0 X 107 57/,
respectively (Table 4).

5. CONCLUSIONS AND OUTLOOK

Both experimental and computational techniques have
achieved remarkable advances in characterizing biomolecular
binding kinetics, including SPR, QSKR, MD, and enhanced
sampling simulations. It is still very expensive and resource-
consuming for experimental techniques to obtain biomolecular
binding kinetic rates. Nevertheless, recent years have seen
increasing numbers of experimental binding kinetic data,
leading to a number of databases to collect such information.

Based on the experimental binding kinetic data, QSKRs have
been developed to predict binding kinetic rate constants with
high throughtput.”” For MD simulations, accuracy of binding
free energy calculations could be within 1.0 kcal/mol with the
modern techniques.'”® Compared with extensively studied
biomolecular binding thermodynamics, the accuracy and
efficacy of modeling techniques for predicting biomolecular
binding kinetics are still not very high. The predicted binding
kinetic rate constants from MD simulations and related
enhanced sampling methods could derivate orders of
magnitude from the experimental data (Tables 2—4 and
Figure 1B). Nevertheless, MD simulations have enabled
characterization of biomolecular binding pathways and
kinetics, attracting increasing attention in recent years.
Enhanced sampling methods have greatly reduced the
computational cost for calculations of biomolecular kinetics.
Among various enhanced sampling methods, the MSM,
Weighted Ensemble, Metadynamics, GaMD, and SEEKR
appear to be the most used techniques that allow for
simultaneous predictions of biomolecular binding association
and dissociation rates (Figure 2). Higher sampling efficiency
could be generally obtained using the Metadynamics with well
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predefined CVs than the using the CV-free methods including
MSM, Weighted Ensemble, and GaMD. However, it is often
challenging to predefine good CVs in Metadynamics
simulations of complex biological systems especially for large
biomolecular interactions. In case important CVs are missing
during the simulation setup, Metadynamics simulations could
suffer from the “hidden energy barrier” problem and still slow
sampling convergence.'”” It is rather difficult to directly
compare predictive accuracy among different methods as
different force fields and systems were used. Nevertheless, the
trypsin-benzamidine system is the most widely used system for
benchmarking different methods (Table 1). The ranks of the
accuracy in predicting k,; are Weighted Ensemble combined
with milestone, SEEKR2, InMetaD combined with Machine
Learning, SEEKR, Weighted Ensemble, InMetaD, MSM,
LiGaMD, and CGMD. On the other hand, the methods
providing accurate predictions of k,, are ranked as SEEKR2,
InMetaD, LiGaMD, SEEKR, MSM, Weighted Ensemble
combined with milestone, and CGMD. Apart from conforma-
tional sampling, the force field could also affect the prediction
accuracy. For example, an ~10-fold faster binding association
rate (k,,) of the barnase to barstar was obtained using the
TIP4P2015 water model than using the TIP3P water model.®”
The polarizable force field was able to generally improve the
accuracy of the force field."”” Another trend is the
incorporation of ML into enhanced sampling methods to
further improve sampling efficiency and prediction accuracy of
biomolecular binding kinetic rates.”®'*”'*" For example, the
combination of InMetaD and ML decreased the prediction
error A log(kaff) from 0.84°" to 0.42% for the trypsin-
benzamidine system using the same force field of AMBER
ff14SB and GAFF. Overall, current computational methods
have been tested mostly on very few model systems with
published experimental kinetic data in the literature. The
simulation protocols could be potentially calibrated to predict
the kinetic rate constants against the experimental values.
Future developments of enhanced sampling methods and force
fields are still needed for more accurate predictions of
biomolecular binding kinetics. This would suggest a need for
the community to organize blind challenges of biomolecular
binding kinetics predictions, in which participants predict the
kinetic rates without knowing the experimental values and the
predictions will be evaluated independently by the challenge
organizers. Such challenges are expected to greatly facilitate
improvements of the various techniques developed for
predicting biomolecular binding kinetics in the field. In
addition to protein—ligand binding, protein—peptide binding,
and protein—protein interactions, interactions of nucleic acids
(RNA and DNA) with small molecules and proteins remain
largely underexplored and warrant more kinetics studies.

In summary, accurate calculations of biomolecular binding
kinetics of large biomolecular complexes present grand
challenges for computational modeling and enhanced sampling
simulations. Further innovations in both computing hardware
and method developments may help us to address these
challenges in the future.
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