Given the following measurements:

<table>
<thead>
<tr>
<th>T_p (ms)</th>
<th>M_p (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.63</td>
<td>1.16</td>
</tr>
</tbody>
</table>

PLA-1: Use Equation (27),

$$M_p = 1 + e^{-\pi \zeta / \sqrt{1 - \zeta^2}}$$

to show that:

$$\zeta = \sqrt{\frac{\ln^2(M_p - 1)}{\pi^2 + \ln^2(M_p - 1)}}$$

and compute a numerical value of the damping factor ζ. Is the circuit underdamped, critically-damped, or overdamped? (Explain and underline the correct answer.)

PLA-2: Compute a numerical value of the natural frequency ω_n (rad/s) using Equation (26),

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

and the previously-calculated value of ζ.

PLA-3: Substitute the values of ζ and ω_n into the following quadratic polynomial and compute numerical values for its (complex) roots:

$$P(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$