

BOISE STATE UNIVERSITY

Optimizing ATDC5 Seeding of Graphene Foam for Cartilage Tissue Engineering

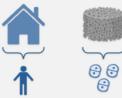
Olivia Nielson¹, Mone't Alberts², Josh Eixenberger³, Raquel Montenegro-Brown³ David Estrada³

¹Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho 83844 ²School of Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho 83725 ³Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725

I. Introduction

Osteoarthritis (OA):

- 11th leading cause of disability worldwide
- Impacts 50% US population over 65
- Cartilage has limited regenerative capacity
- Current treatments are inadequate and expensive


Prospective Treatment → Tissue Engineering (TE)

Advantages of Tissue Engineering:

- Patient specific (individualized stem cell treatment)
- Regenerative approach
- Ability to utilize bioscaffolds to match mechanical properties of target tissue

Scaffolds Growth Factors Mechanical Forces

Role of Bioscaffolds

Cells need a

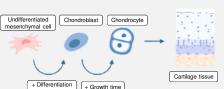
framework to grov

and thrive

People need a sturdy, reliable place to live

Graphene Foam → Prospective Bioscaffold:

- Superior mechanical strength which matches target tissue
- High electron mobility
- Thermal conductivity
- Biocompatible


Challenge → Controlling cell differentiation:

- Must optimize cell adherence
- Must optimize cell characterization

Purpose: The goal of this work is to optimize the ATDC5 seeding and characterization protocols during 3D cell culture on graphene foam bioscaffolds for cartilage tissue engineering.

Three chondrocytes enclosed by one membrane

II. Materials and Methods

Cell Culture Workflow: Sterilize then air dry Pure Graphen Seed 6 well plates with ATDC5 cells + new GM Grow cells for 7 days Condition GF in 3 mL of growth media 24 hours, then remove GM

	Trial 1	Trial 2
Plate Treatment	None	Anti-Adherence Rinse
Cell Density (approx.)	5.5 *10 ³ cells	5.5 *10 ³ cells

Characterization Techniques:

Using these techniques

individually is inadequate

for cell characterization

and secondary antibody

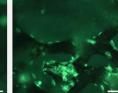
staining to bind the actin

of the cell with colloidal

gold, making cells

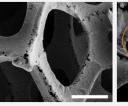
on GF using MicroCT.

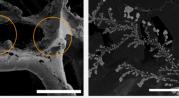
Structural propert	Fluorescence Imaging Microscopy	Scanning Electron Microscopy (SEM)	Microcomputed Tomography
Porosity			✓
Pore size		✓	✓
Surface Roughne	ess	✓	~
Pore Interconnecti	ivity		✓
Live cell observati	ion 🗸		
Surface to volum ratio	ne		~
Composition GI	F	✓	
Topography GF	:	✓	


Fluorochrome Anti-body grown in 3D on GF. Our lab Colloidal Host: Goat gold nano-(Anti-rabbit) formulated a technique for particle imaging cells using primary Primary Anti-body Host: Rabbit detectable and discernible Cell Host: Mouse

Antibody staining schematic:

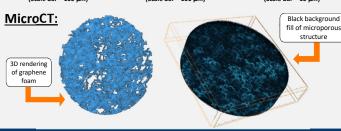
III. Results/Discussion: Quantifiable data


Fluorescence Imaging Microscopy:



Scanning Electron Microscopy:

[2] SEM Images



Bare GF GF with ATDC5 cells (Scale bar = 100 µm) (Scale bar = 100 um)

GF with PBS deposits (Scale bar = 10 um)

IV. Conclusion/ Future Work

- The anti-adherence rinse plate treatment resulted in minimal cell adherence to glass chamber slides forcing cells to adhere to the GF.
- No plate treatment resulted in most of the cells adhering to the bottom of the culture dish and few to GF, indicating that using anti-adherence rinse is the best method for seeding GF.
- Storing fixed cells on GF in PBS before staining resulted in salt crystals.
- A methanol rinse will be implemented as an alternative solution in the future to mitigate noise and nonspecific imaging during MicroCT. This work will lead to using graphene foam bioscaffolds as an active scaffold for electrical stimulus during 3D cell culture.

V. Acknowledgements and References

This material is based upon work supported by the National Science Foundation via Awards #1848516 and #1950305. The authors acknowledge infrastructure support from Department of Energy under Award #DE-NE0008677 and the National Institutes of Health under Awards #P20GM103408, #P20GM109095, and #1C06RR020533.

- [1] https://www.mbortho.com/patients/education/Knee-Arthritis.htm
- [2] Jacob Manzi for SEM images