
Journal of Hydrology 511 (2014) 310–319
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol
Data processing for oscillatory pumping tests
http://dx.doi.org/10.1016/j.jhydrol.2014.01.007
0022-1694 � 2014 The Authors. Published by Elsevier B.V.

⇑ Corresponding author. Tel.: +1 650 724 3313.
E-mail address: taniab@stanford.edu (T. Bakhos).

Open access under CC BY-NC-ND license.
Tania Bakhos a,⇑, Michael Cardiff b, Warren Barrash c, Peter K. Kitanidis d,a

a Institute for Computational and Mathematical Engineering, Jen-Hsun Huang Engineering Center, Stanford, CA, United States
b Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
c Center for Geophysical Investigation of the Shallow Subsurface, Department of Geosciences, Boise State University, Boise, ID, United States
d Department of Civil and Environmental Engineering, Yang and Yamazaki Environment and Energy Building, Stanford, CA, United States
a r t i c l e i n f o

Article history:
Received 27 June 2013
Received in revised form 3 January 2014
Accepted 5 January 2014
Available online 13 January 2014
This manuscript was handled by Corrado
Corradini, Editor-in-Chief, with the
assistance of Nunzio Romano, Associate
Editor

Keywords:
Periodic signals
Aquifer characterization
Oscillatory pumping tests
Data processing
a b s t r a c t

Characterizing the subsurface is important for many hydrogeologic projects such as site remediation and
groundwater resource exploration. Methods based on the analysis of conventional pumping tests have
the notable disadvantage that at a certain distance, the signal is small relative to the noise due to the
effects of recharge, pumping in neighboring wells, change in the level or adjacent streams, and other
common disturbances. This work focuses on oscillatory pumping tests in which fluid is extracted for half
a period, then reinjected. We discuss a major advantage of oscillatory pumping tests: small amplitude
signals can be recovered from noisy data measured at observation wells and quantify the uncertainties
in the estimates. We demonstrate results from a joint inversion of storativity and transmissivity. We con-
clude with an analysis of the duration of the initial transient, providing lower bounds on the length of
elapsed time until the effects of the transient can be neglected.

� 2014 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Subsurface imaging, or determining important hydraulic
parameters such as spatially-distributed hydraulic conductivities
(K) and specific storage (Ss), remains an important challenge in
hydrology. Various pressure-based methods, i.e., methods that
use changes in head or flow rate as the primary source of measure-
ments, have been used to obtain an image of the 3-D heterogeneity
of the flow parameters. Examples of such methods include partially
penetrating slug tests (e.g. Bouwer and Rice, 1976, Butler (1998),
Cardiff et al. (2011), and Zlotnik and McGuire (1998)), direct push
methods (e.g. Dietrich and Leven (2009), Butler et al. (2002)) and
borehole flow meters (e.g. Hess (1986), and Paillet (1998)).

Hydraulic tomography (Hao et al., 2007; Illman et al., 2009; Yeh
and Liu, 2000) is an imaging method that uses data from aquifer
tests in which the pressure is changed at several distinct locations
and the measurements of pressure responses at many locations in
the aquifer are recorded. Inversion of the resulting data set pro-
vides an estimate of 3-D spatially heterogeneous flow parameters
(Gottlieb and Dietrich, 1995). One example of such a method is
transient hydraulic tomography (Zhu and Yeh, 2005; Cardiff
et al., 2012; Berg and Illman, 2011; Xiang et al., 2009). A more com-
prehensive review of publications on research related to hydraulic
tomography is offered by Cardiff and Barrash (2011).

A difficulty associated with traditional pumping and slug tests
and also hydraulic tomography based on these tests is that the sig-
nal weakens with distance and, after a certain point becomes sub-
merged in the ambient noise. The hydraulic head is sensitive to
external changes, such as changes in the level of rivers adjacent
to the field area, pumping or irrigation in close proximity to the
observation well, tidal effects, barometric pressure, changes in
overburden, etc. Noise from these sources may affect results in a
variety of ways (Spane and Mackley, 2011). A disadvantage of
hydraulic tomography using constant-rate pumping tests is that
the signal associated with hydraulic tomography may not be easily
distinguishable from these noises and trends.

Oscillatory hydraulic tomography is a subsurface imaging
method that employs a tomographic analysis of oscillatory signals.
In oscillatory signal tests, a periodic pressure signal can be imposed
at one or more stimulation points, and the transmitted effects of
this signal are recorded at monitoring wells. The idea of harmonic
testing was first proposed in the petroleum literature by Kuo
(1972) as an extension to pulse testing (Johnson et al., 1966;
McKinley et al., 1968). More recent publications on reservoir char-
acterization using harmonic tests include Fokker et al. (2012),
Fokker and Verga (2011), and Ahn and Horne (2011). Oscillatory
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aquifer tests have similarly been used to estimate aquifer hydraulic
parameters (Engard et al., 2005; Wachter et al., 2008; Becker and
Guiltinan, 2010).

Oscillatory pumping tests have several advantages over tradi-
tional pumping tests including (1) a reduction in the cost of dispos-
ing of contaminated water because there is no net extraction or
injection into the aquifer, (2) a reduced computational cost
through use of a steady-periodic model and (3) an ability to distin-
guish the signal from the background noise. Disadvantages of oscil-
latory pumping tests may include (1) the need for potentially
different field equipment to generate a periodic stimulation and
(2) the amplitude of signals at the observation locations may be
much smaller than those of signals generated by constant-rate
pumping.

As a modification to oscillatory pumping test analysis, multi-
frequency oscillatory hydraulic imaging was proposed by Cardiff
et al. (2013) in which multiple signals of different frequencies
are used as a stimulation to obtain information on the aquifer
heterogeneity. The authors use a ‘‘steady-periodic’’ model formu-
lation to analyze the head responses to the stimulation, which al-
lows for a reduced computational cost in numerically solving the
fully-transient model. This formulation assumes that the signal
has reached a steady periodic state and assumes that the initial
transient effects are negligible. An analysis of when this assump-
tion can accurately be made is an important question that, to the
best of our knowledge, has not yet been addressed. Black and
Kipp Jr (1981) first introduced an analytic solution for the stea-
dy-periodic response of the signal to a line-source oscillatory
stimulation for a homogeneous isotropic aquifer that is effec-
tively laterally unbounded. This approach provided an estimate
of the hydraulic diffusivity using the ratio of the amplitude or
phase shift from two observations wells. Rasmussen et al.
(2003) derived the leaky and partially penetrating analytic solu-
tion for transmissivity and storativity in a confined aquifer. They
also provide expressions for the transient solution that decays
with time.

We use the analytic expressions to show that the duration of
the initial transient (i.e. number of periods required for the signal
to achieve a steady-periodic response) is a function of a non-
dimensional quantity. The non-dimensional expression depends
on the following physical parameters: the frequency of oscillations,
the radial distance from the source, and the hydraulic diffusivity.
We extend the analysis to more general heterogeneous aquifers
and derive bounds for the time required for the signal to reach a
steady-periodic response.

The existence of signal processing routines for signal extrac-
tion and denoising for oscillatory signals was briefly discussed
in Cardiff et al. (2013). To denoise an oscillatory signal, methods
such as the discrete Fourier transform (Renner and Messar, 2006;
Hollaender et al., 2002) and ordinary least squares (Rasmussen
et al., 2003; Toll and Rasmussen, 2007) are commonly and suc-
cessfully used. We assume the frequency of oscillations is known
and demonstrate the effectiveness of ordinary least squares in
recovering the signal in the presence of common sources of noise.
We quantify the uncertainties in the estimates and show that the
errors in estimating the components (phase and amplitude) of a
signal decay with time. Using regression for denoising and using
the results of the covariance of the estimator, we present a joint
inversion of storativity and transmissivity of a synthetic 2-D
example.

The paper is organized as follows. In Section 2 we review the
governing equations. In Section 3, we discuss denoising the signal
under various types of noise, which is followed by a joint inversion
of storativity and transmissivity in Section 4. In Section 5, we ana-
lyze the behavior of the initial transient and follow with conclud-
ing remarks in 6.
2. Governing equations

In this section, we review the governing equations. This closely
follows the notation and presentation of Cardiff et al. (2013).
Groundwater flow through a 2-D depth-averaged confined aquifer
with horizontal confining layers for a domain X and boundary @X
is described by the following equations,

SðxÞ @hðx; tÞ
@t

�r � ðTðxÞrhðx; tÞÞ ¼ qðx; tÞ; x 2 X ð1Þ

hðx; tÞ ¼ 0; x 2 @XD ð2Þ

rhðx; tÞ � n ¼ 0; x 2 @XN ð3Þ

where n is the normal vector, x 2 R2 (L) denotes the position vector,
h (L) represents the hydraulic head, SðxÞ (–) represents the storativ-
ity and TðxÞ (L2/T) represents the transmissivity. XD and XN refer to
Dirichlet (constant head) and Neumann boundary conditions (con-
stant flux) respectively.

Using Euler’s formula, we represent the oscillator as an expo-
nential function. For the case of one source at position xs oscillating
at a fixed frequency x (radians/T), qðx; tÞ is given by

qðx; tÞ ¼ Q0dðx� xsÞeixt ð4Þ

Because the solution is linear in time, the signal (after some initial
time has elapsed) achieves a steady-periodic response and can be
represented as,

hðx; tÞ ¼ UðxÞeixt ð5Þ

where UðxÞ, known as the phasor, carries information about the
amplitude and phase of the signal. Plugging these definitions into
(1) results in the more computationally efficient form,

ixSðxÞUðxÞ � r � ðTðxÞrUðxÞÞ ¼ Q0dðx� xsÞ; x 2 X ð6Þ
UðxÞ ¼ 0; x 2 @XD ð7Þ
rUðxÞ � n ¼ 0; x 2 @XN ð8Þ

The hydraulic head is given by (5) once U is known. Note that
the steady-periodic formulation, i.e. Eqs. (6)–(8), only holds if we
are able to neglect the initial transient.
3. Signal denoising

In this section, we will assume that the effects of the transient
can be neglected and that the solution to the groundwater equa-
tions is a sinusoid of known frequency. Even though the solution
is a sinusoid of known frequency, in practice, the measurement sig-
nals are corrupted by noise. In this section, we address how to re-
cover the signal from a set of noisy measurements. We
demonstrate the effectiveness of linear regression on four common
types of noise: white noise, white noise with a jump in the signal,
white noise with a linear drift and correlated noise, and quantify
the errors in the estimates. This analysis hinges on the fact that
the frequency is known however if the frequency is unknown,
one can extract the frequency of the sinusoid by using the discrete
Fourier transform and then proceed with this analysis.

Consider the measurement time series at a given point,

Uð�x; tiÞ ¼ b1 cosðxtiÞ þ b2 sinðxtiÞ þ �ðtiÞ ð9Þ

where �ðtiÞ is the residual or error term. We assume � has zero
mean. If � has known mean l, it can be detrended by subtracting
it from (9). If l is not known, it will be shown that the following
analysis holds true provided the time between measurements is
small enough. Rewrite U as
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U ¼ Xbþ �; X ¼

cosðxt1Þ sinðxt1Þ
cosðxt2Þ sinðxt2Þ

..

. ..
.

cosðxtmÞ sinðxtmÞ

0
BBBB@

1
CCCCA; b ¼

b1

b2

� �

ð10Þ

Note that if the signal was not perfectly a single sinusoid but in-
stead a sum of several sinusoids oscillating at distinct frequencies
then the columns of X would be extended to incorporate the addi-
tional frequencies. For this analysis however we limit ourselves to
the case of a single sinusoid. The solution to the least-squares prob-
lem for b̂ ¼ ½b̂1; b̂2�

T
is given by

b̂ ¼ ðXT XÞ�1
XTU ð11Þ

Estimating for b1 and b2 is equivalent to regressing on the phase and
amplitude of the signal however it circumvents the problem of non-
uniqueness of the phase. The covariance of the estimates is given by

Covðb̂Þ ¼ ðXT XÞ�1
XT E½��T �XðXT XÞ�1 ð12Þ

where E[] denotes the expected value. Expression (12) depends on
the covariance matrix of �, and can be simplified under certain
assumptions of the noise.

For our numerical results, all of our examples are synthetic and
we consider the signal

Uðx; tÞ ¼ 0:02 cosðxtÞ þ 0:05 sinðxtÞ ðmÞ ð13Þ

with x ¼ 2p=40 (1/s). Assume the data is being collected for a total
of 30 periods (i.e. 20 min) at sampling intervals of 0.1 s. We present
results for four distinct types of noise.

1. First we consider the case of white noise (Fig. 1). Suppose
�i � Nð0;r2Þ. Then, E[��T ] ¼ r2I and expression (12) simplifies
to,
Fig. 1. Hydraulic head at three periods, in the case of white noise. � � Nð0;r Þwith
r ¼ 1 (cm) (top) and r ¼ 5 (cm) (bottom). The L2 norm of the relative errors are
respectively 0:36% and 1:7%. The root mean square errors in the estimates are
respectively 0:01 (cm) and 0:06 (cm). The data is synthetic, with the true signal
being that shown in (13).
Covðb̂Þ¼r2ðXT XÞ�1 ð14Þ

¼r2

Xm

i¼1

cos2ðxtiÞ
Xm

i¼1

cosðxtiÞsinðxtiÞ

Xm

i¼1

sinðxtiÞcosðxtiÞ
Xm

i¼1

sin2ðxtiÞ

0
BBBB@

1
CCCCA

�1

ð15Þ
Each of the sums in (15) can be viewed as a product of 1=Dt and the
left Riemann sum of their respective functions. If the interval of
time between measurements Dt is small and the total sampling
time, Ts, is a multiple of the period of the signal,
Covðb̂Þ � 2r2 Dt
Ts

1 0
0 1

� �
ð16Þ
The covariance decreases with an increase in Ts=Dt, the number of
data measurements. The result (16) indicates that there is no pos-
terior covariance between the two estimates, i.e. the errors in esti-
mating b1 and b2 are uncorrelated. We can thus write the error in
the estimates as,
jb̂� bj � 2Dt
Ts

P
�i cosðxtiÞP
�i sinðxtiÞ

� �
ð17Þ
In the case where � has a nonzero mean l, the estimates will not be
affected provided the data is being collected for a multiple of the
period. This is because the solution is given by,
b̂ ¼ ðXT XÞ�1
XTðU� lÞ ð18Þ
and if the data is being collected for a multiple of the period,
XTl ¼ 0.
2. Consider the case where in addition to white noise, there is an
abrupt shift in the hydraulic head at some time in the time ser-
ies. If the shift occurs for exactly a multiple of the period (Fig. 2),
it will not affect the least squares estimates because of its
orthogonality with XT . The worst case would be when it hap-
pens for an additional half period (Fig. 3). While the error due
to the non-orthogonal components will remain present, the
overall error can be reduced by taking a longer measurement
collecting interval.

3. Consider the case where there is a linear drift in addition to
white noise such that the measured signal is
Uðx; tÞ ¼ 0:02 cosðxtÞ þ 0:05 sinðxtÞ þ � ðmÞ ð19Þ
where �i ¼ ati þ ni , ni � Nð0;r2Þ and a (m/s) is the drift coefficient.
We consider two cases: (1) where the presence of the drift is un-
known and too small to be visible in the raw data, and (2) when
the presence of a linear drift is known or visible. In the former case
(see Fig. 4) and by keeping the same regressors, the errors in the
estimate of b are given by,
b̂� b ¼ ðXT XÞ�1
XTðat þ �Þ ð20Þ
If the sampling time Dt is small enough and that data is being col-
lected for a multiple of the period, then
jb̂� bj � 2a
x

0
1

� �
þ 2Dt

Ts
XT n

����
���� ð21Þ



Fig. 2. Hydraulic head at three periods, in the case of white noise with an abrupt
shift of one period (The jump is exaggerated for illustration purposes).
� � Nð0;r2Þ;r ¼ 1 (cm) (top) and r ¼ 5 (cm) (bottom). The L2 norm of the relative
errors are respectively 0:36% and 1:7%. The root mean square errors in the
estimates are respectively 0:01 (cm) and 0:06 (cm). Note these errors are identical
to the pure white noise case, because the disturbance occurred for exactly a
multiple of the period. The data is synthetic, with the true signal being that shown
in (13).

Fig. 3. Hydraulic head at three periods, in the case of white noise with an abrupt
shift of half a period (The jump is exaggerated for illustration purposes).
� � Nð0;r2Þ;r ¼ 1 (cm) (top). The L2 norm of the relative error is 2:8% and the
root mean square error of the estimates is 0:1 (cm) and (bottom) plot of the root
mean square error with time. The data is synthetic, with the true signal being that
shown in (13).
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Note that the second term is precisely the error that results from
having pure white noise. The additional errors incurred by the
presence of a linear drift do not affect the estimates b̂1. The esti-
mates for b̂2 depend on both a and x and do not decrease with
the sampling time, however, if there is a constant linear drift
present, a longer sampling time will increase the likelihood of the
detection of the drift by looking at the measured signal. If the pres-
ence of the drift is known or can be detected by looking at the mea-
sured signal, the regressors can be modified and the estimates
improved.
U ¼ Xbþ n;

X ¼

cosðxt1Þ sinðxt1Þ t1

cosðxt2Þ sinðxt2Þ t2

..

. ..
. ..

.

cosðxtmÞ sinðxtmÞ tm

0
BBBB@

1
CCCCA; b ¼

b1

b2

a

0
B@

1
CA ð22Þ
By regressing for the drift coefficient, this allows for more accurate
results (see Fig. 5). In particular, the error of using the new regres-
sors results in an error,
jb̂� bj � 2Dt
Ts

1 0 0
0 1þ 12

�12þ2T2
s x2

6x
�12þT2

s x2

0 6x
�12þT2

s x2
3x2

�12þ2T2
s x2

0
BB@

1
CCA

P
ni cosðxtiÞP
ni sinðxtiÞP

niti

0
B@

1
CA

ð23Þ
Note that the additional errors incurred by assuming drift behave as
Dt=T2

s and thus their effects are negligible if the sampling time is
long enough.
4. Consider the presence of a stationary ARð1Þ, or first-order auto-

regressive, noise (Fig. 6). Such a process has the property that
the output depends on the value at the previous time. It can
be written as
Uð�x; tiÞ ¼ b1 cosðxtiÞ þ b2 sinðxtiÞ þ �i ð24Þ
where �i ¼ c�i�1 þ ni and ni � Nð0;r2Þ; jcj < 1.

In all four of the cases discussed, we have shown that using lin-
ear regression allows us to recover the signal from a set of noisy
measurements.



Fig. 4. Hydraulic head at the entire sampling duration, in the case of white noise
with a linear drift. n � Nð0;r2Þ and a linear drift a ¼ 0:005 (cm/s). r ¼ 5 (cm) (top).
The L2 norm of the relative error is 2:9% and the root mean square error of the
estimates is 0:1 (cm) and (bottom) plot of the root mean square error with time. The
data is synthetic, with the true signal being that shown in (13).

Fig. 5. Hydraulic head at the entire sampling duration, in the case of white noise
with a linear drift. n � Nð0;r2Þ and a linear drift a ¼ 0:01 (cm/s). r ¼ 5 (cm) (left).
The L2 norm of the relative error is 1:7% and the root mean square error of the
estimates is 0:06 (cm) and (right) plot of the root mean square error with time. The
data is synthetic, with the true signal being that shown in (13).

Fig. 6. Hydraulic head at three periods, in the case of AR (1) noise. AR (1):
�i ¼ c�i�1 þ ni, where ni � Nð0;r2ð1� c2ÞÞ;r ¼ 1 (cm), c ¼ 0:8 (top). The L2 norms
of the relative error is 1:1% and the root mean square error is 0:04 (cm) and
(bottom) plot of the root mean square error with time for various correlation
coefficients. The data is synthetic, with the true signal being that shown in (13).
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4. Inversion by geostatistical approach

4.1. Geostatistical approach

The next section will briefly describe the geostatistical method
for inversion and demonstrate examples from synthetic cases of
single frequency oscillatory hydraulic imaging, with the signal
denoising done by least squares as described in the previous sec-
tion. The geostatistical method for inversion is one of the prevalent
methods to solve stochastic inverse problems (Kitanidis, 1995;
Kitanidis, 2010; Kitanidis, 2007). We closely follow the algorithm
discussed in (Li et al., 2005) for joint inversion. The idea of the geo-
statistical method for inversion is to represent the unknown field
as the sum of a deterministic term and a stochastic term that mod-
els small-scale variability. Inference of the parameters is made
through the posterior probability distribution function by using
information from the prior combined with the likelihood of the
measurements. The measurement equation can be written as,
y ¼ hðsÞ þ v; v � Nð0;RÞ ð25Þ

where y represents the noisy measurements and v is a random vec-
tor corresponding to observation error with mean zero and covari-
ance matrix R. Let s ¼ sT

k ; s
T
s

� �T be the function to be estimated where
sk and ss correspond to the log transmissivity and log storativity
fields respectively.

sk � NðXkbk;Q kÞ; ss � NðXsbs;Q sÞ ð26Þ

where Xk and Xs are matrices of known base functions and bs and bk

are a set of drift coefficients to be determined. The log-transforma-
tion was used to ensure that the forward problem is well-posed
since the fields need to be positive. Denote the full quantities,

X ¼
Xk 0
0 Xs

� �
; b ¼

bk

bs

� �
; Q ¼

Q k 0
0 Qs

� �
ð27Þ

The expression for Q requires the assumption that log transmis-
sivity and log storativity are uncorrelated. More detail on how to
choose the modeling parameters Q and X can be found in Kitanidis
(1995). To choose R, we use the covariance of the least-squares
estimates as a lower bound. Following the geostatistical method
for quasi-linear inversion, we compute ŝ and b̂ corresponding to
the maximum-a posteriori probability. To solve the optimization
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problem, the Gauss–Newton algorithm is used. Starting with an
initial estimate for the field s0, the procedure is described in Algo-
rithm 1.

Algorithm 1. Quasi-linear geostatistical approach
1: Compute the Ny � Ns Jacobian J as,

Ji ¼
@h
@s

����
s¼si

ð28Þ

2: Solve the system of equations,

JiQJT
i þ R JiX

ðJiXÞ
T 0

 !
niþ1

biþ1

� �
¼

y� hðsiÞ þ Jisi

0

� �
ð29Þ

3: Update siþ1 by,

siþ1 ¼ Xbiþ1 þ QJT
i niþ1 ð30Þ

4: Add a line search if necessary. Repeat steps 1–3 until the
desired tolerance has been reached.

To construct the Jacobian, since the number of unknown param-
eters is generally larger than the number of measurements, the ad-
joint state method is used where by each row of the Jacobian is
calculated by one adjoint ‘run’. For a detailed derivation of the ad-
joint equations for oscillatory pumping tests refer to Cardiff et al.
(2013). Note that if either log transmissivity or log storativity is
known, it is treated as a normal random variable with known mean
Xb and zero covariance and Algorithm 1 remains unchanged. More
details of the inversion can be found in Cardiff et al. (2013) and
Saibaba et al. (2013).
Fig. 7. (top) The location of the pumping source and the measurement wells and
(middle, bottom) the synthetic generated signal used for the inverse problem, noisy
and denoised, at two locations.
4.2. Numerical results

Using the geostatistical method as discussed, we present inver-
sion results for a synthetic example. Assuming a 2-D isotropic
depth-averaged confined aquifer and given a set of discrete mea-
surements of the hydraulic head our objective is to determine
the random log conductivity field. We use FEniCS to discretize
the governing equations using standard linear finite elements
(Logg et al., 2012a; Logg et al., 2012b; Logg and Wells, 2010) and
use the Python interface. The modeling parameters are chosen to
be R ¼ ~r2I;Xs ¼ Xk ¼ ½1; . . . ;1�T . We choose the covariance matrices
Q k and Qs to have entries Q kði; jÞ ¼ Q sði; jÞ ¼ jðxi; yjÞ corresponding
to the exponential kernel,

jðx; yÞ ¼ expð�kx� yk2=ðL=5ÞÞ ð31Þ

such that the correlation length is L=5 ¼ 20 [m], where L is the
length of the domain. (To reduce the computational and memory
cost associated with forming these large covariance matrices, they
are not formed explicitly and the fast Fourier transform (FFT) is
used to accelerate the matrix–vector products.) The measurements
were synthetically generated by adding noise m � Nð0;r2Þ;
r ¼ 0:01 (m). The choice of ~r in the modeling parameter R was cho-
sen based off of the covariance of the least squares estimator. The
pumping volume was 1:4 (L/half cycle) and the pumping frequency
was chosen to be x ¼ 2p=60 (1/s). The pumping source is located at
the center of the aquifer. We assume the signal has reached steady-
periodic state and that data has been collected every 0.1 s for half an
hour. The configuration for data aquisition is shown in Fig. 7, with
the source in the center surrounded by 16 measurement locations.
The system is discretized with 10201 points corresponding to a
physical system of 100 m � 100 m with the area of interest being
the 20 m � 20 m area centered at the origin. The boundary condi-
tions are assumed to be Dirichlet and their effects minimized by
choosing the boundaries at a far enough distance from the source.
At each measurement location we denoise the signal to get the
two components of b̂ which are then recorded. These components
effectively correspond to the sine and cosine components of the sig-
nal and are both used in the inversion. The results are presented for
known constant storativity (S ¼ 10�5 ½���) (Fig. 8) and for the joint
inversion case where both storativity and transmissivity are not
known (Figs. 9 and 10). All true fields were considered to be Gauss-
ian random fields generated using an exponential covariance kernel
jðx; yÞ ¼ expð�kx� yk2=ðL=5ÞÞ using the algorithm described in
Dietrich and Newsam (1993). The parameters used in the genera-
tion of the numerical example are summarized in Table 1.



Fig. 8. The true log transmissivity field (top) and the reconstructed log transmis-
sivity field (bottom) the relative L2 error within the area of measurements is
0:13 – for the inversion for transmissivity only. The plots are zoomed in so the area
of measurements is more clearly visible.

Fig. 9. The true log transmissivity field (top) and the reconstructed log transmis-
sivity field (bottom). The relative L2 error within the area of measurements is
0.18 – for the joint inversion. The plots are zoomed in so the area of measurements
is more clearly visible.

Fig. 10. The true log storativity field (top) and the reconstructed log storativity field
(bottom). The relative L2 error within the area of measurements is 0:59 – for the
joint inversion. The plots are zoomed in so the area of measurements is more clearly
visible.

Table 1
Parameters chosen for test problem.

Definition Parameters Values

Aquifer length (m) L 100
Mean storativity (–) log10S �4
Variance of storativity (first example) r2ðlog10SÞ 0
Variance of storativity (second example) r2ðlog10SÞ 0:11
Mean transmissivity (m2/s) lðlog10TÞ �5
Variance of transmissivity r2ðlog10TÞ 0:12
Frequency (1/s) x 2p

60

Pumping volume (L/half cycle) Q 1:4
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5. Analysis of the initial transient

5.1. Homogeneous aquifers

We have so far considered the groundwater equations after the
effects of the initial transient have subsided and can be neglected.
In this section, we analyze the duration of this initial transient. Un-
der the assumption of a homogeneous isotropic confined aquifer
where the lateral extent of the aquifer is ‘‘infinite’’ compared to
the measurement locations, the problem simplifies to the case of
a penetrating line source of periodic flow for which the transient
solution is known. An analytic solution to the steady periodic solu-
tion to this problem was introduced in (Black and Kipp Jr, 1981). A
similar set of analytic solutions, including an expression for the ini-
tial transient, was derived in (Rasmussen et al., 2003) is

hðr; tÞ ¼ Q 0eixt

2pT
K0 r

ffiffiffiffiffiffi
ix
D

r !
�
Z 1

0

kJ0ðrkÞ
ix
D þ k2 e�ðixþDk2Þtdk

 !
ð32Þ
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where r (L) is the radial distance from the pumping source,
D ¼ T=S ðL2=TÞ is the diffusivity and J0 and K0 are the zeroth-order
modified Bessel functions of the first and second kind respectively.
The first term corresponds to the steady periodic solution and the
second term corresponds to the initial transient that decays with
time. Eq. (32) indicates that the duration of the transient depends
on the parameters x;D and r. Denote T5% and NP5% as the length
of time and the number of periods respectively that is required
for the magnitude of the transient solution to fall within 5% of
the amplitude of the corresponding steady state solution. (The sub-
scripts 1% and 10% correspond accordingly to the 1% and 10%

marks – see Fig. 11).
To simulate realistic field conditions, we use an oscillating

pumping stimulation that contains a period of ‘‘ramp-up’’.

qðx; tÞ ¼ Q 0 cosðxtÞ 1� expð�ðt=TÞ2Þ
� 	

dðx� xsÞ ð33Þ

where T, the time scale parameter is chosen to be the period of the
oscillations. We use the adaptive Gauss–Konrad quadrature to
numerically integrate the solution for a source term of the form
(33) (Shampine, 2008). The duration of the initial transient in-
creases as r and x increase and decreases as D increases (Fig. 12
– top, middle). A natural non-dimensional scaling that combines
the parameters of interest is
Fig. 11. (top) The transient solution with marked lines denoting the time at which
the magnitude of the transient drops to 1 (black), 5 (blue) and 10% of the amplitude
of the signal. (bottom) Comparison of the signal (transient plus steady-state) and
steady-state only. The parameters used in this example are Y ¼ 10�4 (m2/s),
S ¼ 10�5 (–), x ¼ 2p=40 (1/s) and Q ¼ 1:6 (L/half cycle). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
c ¼ x
D

r2 ð34Þ

The hypothesis that NP5% admits a scaling of this form is tested and
we observe that the data collapses into a single curve (Fig. 12 – bot-
tom). In other words, the number of periods is a self-similar solu-
tion with c being the similarity variable. Fig. 12 shows the
behavior of the initial transient for a specific range of c and this
range was chosen to be representative of the range of ‘‘measurable’’
signals, as demonstrated by Fig. 13 but it is not exhaustive. If the
Fig. 12. q ¼ Q0 cosðxtÞð1� expð�ðt=TÞ2ÞÞ; T being the period of oscillations. Behav-
ior of T5% as (top) diffusivity is fixed – D ¼ 0:1 (m2/s), radius varies and (middle)
radius is fixed r ¼ 20 (m), diffusivity varies (bottom) loglog plot demonstrating data
collapse using the scaling parameter c. Note that the blue and black lines
correspond to 1% and 5% respectively. The hollow symbols correspond to the case
where radius is fixed, i.e. the top plot, and the shaded symbols to the case where the
diffusivity is fixed, i.e. the middle plot. Using the non-dimensional scaling, they
collapse onto a single line. The minimum number of periods we considered was 3
periods. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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estimates of the aquifer parameters (storativity and transmissivity)
are available, the curve in Fig. 12 provides a lower bound on the
time needed to wait, depending on the desired error tolerance. If
the values of interest do not fall within this range, these curves
can be generated again as necessary.
5.2. Heterogeneous aquifers

Aquifers are, in general, not homogeneous and an analytic solu-
tion of the form (32) is not available. One approach is to use the
analysis described for homoegeneous aquifers using effective
parameters for storativity and transmissivity, if available. Another
approach for dealing with heterogeneous aquifers is to calculate a
bound for which the time falls within some tolerance tol based on
the eigenvalues of the discretization matrices. This can only be
done if estimates for the fields are available. We semi-discretize
the PDE (1),

KhþM
@h
@t
¼ beixt ð35Þ

h and b are vectors corresponding to the spatial discretizations of
the hydraulic head and the source term respectively. The time at
which the solution falls within a given tolerance tol of the steady
periodic solution (see the appendix for a derivation) is given by,

T ¼ 1
kmin

log
k~bk2

tol �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

min þx2
q� �

0
BB@

1
CCA ð36Þ

where kmin is the minimum eigenvalue of M�1=2KM�1=2 and
~b ¼ M�1=2b. Note that knowledge of kmin requires estimates for the
conductivity and storativity field to be known apriori. Also note that
since this bound holds on the entire domain and we are only con-
cerned about the behavior of the signal at specific locations, i.e.
the measurement locations, it will be a loose upper bound. It will
be a large overestimate of the time one has to wait, particularly if
the domain is much larger than the measurement location area.
While the method discussed has its limitations, it nonetheless pro-
vides a first analysis to estimate how long the effects of the initial
transient persist.
Fig. 13. The attenuation of the signal with c. h0 ¼ Q
2pT. Note that at

c � 100; h � Q
2pT � 10�3. With typical values of Q ¼ 0:1 (L/s) and T ¼ 10�4 (m2/s),

the signal for c ¼ 100 would be h � 2 � 10�4 (m).
6. Conclusions and discussion

We have presented approaches to estimate the time needed un-
til the signal reaches a steady-periodic response. When the noise
level is low, the time at which the transient becomes insignificant
is clear from the measurements. However, if the signal is sub-
merged in the noise, it is difficult to distinguish the transient from
the steady state. For the homogeneous case, we have shown how
the number of periods scales with a non-dimensional scalar that
depends on diffusivity, radius from the oscillating source, and fre-
quency of oscillations. This analysis will be beneficial for those
conducting field experiments as the analysis provided offers a low-
er bound for the duration during which the initial transient effects
cannot be neglected. For heterogeneous aquifers and if estimates of
the storativity and transmissivity fields are known, we suggested
an alternate method however both methods discussed have their
limitations and this question needs to be further investigated.
One extension would be to consider a reduced order model for
the groundwater equations.

A major benefit in oscillatory pumping tests is the ability to ex-
tract the signal from a variety of different types of noise, even
when the signal is small compared to the level of noise provided
the duration of the test is long enough. While we have focused
our analysis on four different types of noise, the sinusoidal nature
of the signal allows us to extract low magnitude signals from a
wider variety of disturbances provided the time is long enough.
In practice, there might be noise that has periodic components,
such as daily tidal signals, however these can be identified prior
to the actual test to ensure that the pumping frequency is unique
in the sense that interference with such signals is minimized. We
demonstrated the effectiveness of regression and concluded by
presenting results for a joint inversion of storativity and
transmissivity.

While we have only shown results of single frequency signals,
multiple frequency signals can just as easily be denoised and the
additional information obtained from the additional frequencies
improves the resulting image reconstruction, as demonstrated by
Cardiff et al. (2013). Instead of each test corresponding to a sin-
gle-frequency oscillatory, pumping at multiple frequencies simul-
taneously would reduce the total time required to conduct a field
test. This holds exciting prospects for oscillatory hydraulic tomog-
raphy. In future studies, we will investigate which frequency, or
range of frequencies, yields the best inversion results. There have
been recent developments in efficient methods of solving the in-
verse problem using the geostatistical approach for oscillatory
hydraulic imaging based on a Krylov subspace method for shifted
systems (Saibaba et al., 2013).

Our analysis was limited to the most basic two-parameter mod-
el. In many cases, a dual porosity model may be more appropriate.
Additional questions of practical importance that we will investi-
gate in future studies are the effects of leakage, boundaries and
how the results from oscillatory hydraulic tomography compare
with those resulting from transient and steady-state hydraulic
tomography. It may be that combining these tests would provide
more detail than a single test alone.
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Appendix A. Derivations

We derive bounds for which the solution of the groundwater
equations is effectively steady-periodic. After semi-discretizing
the partial differential Eq. (1),

KhþM
@h
@t
¼ beixt ðA:1Þ

where K and M are the stiffness and mass matrix respectively, and b
and h are now vectors corresponding to the discretization of the
amplitude of the pumping source and the hydraulic head respec-
tively. Define M1=2 ¼ UK1=2UT where the columns of U are the eigen-
vectors of M. Then by multiplication of (A.1) with M�1=2,

A~hðx; tÞ þ @
~hðx; tÞ
@t

¼ ~beixt ðA:2Þ

where A ¼ M�1=2KM�1=2 is a symmetric positive definite matrix,
~h ¼ M1=2h and ~b ¼ M�1=2b. The solution to (A.2) is given by the var-
iation-of-constants formula (Hochbruck and Ostermann, 2010).

~hðx; tÞ ¼
Z t

0
e�ðt�sÞA~beixsds ðA:3Þ

Assume a diagonalization of A, A ¼ VDVT ¼
Pn

j¼1kjv jvT
j , where V

is the matrix whose columns are the eigenvectors of A, v j, and D is
a diagonal matrix whose diagonal is comprised of the eigenvalues
of A, kj. Evaluating (A.3),

~hðx; tÞ ¼
Xn

j¼1

eixt � e�kj t

kj þ ix
v jvT

j

 !
~b ðA:4Þ

As t !1; ~hðx; tÞ reaches a quasi-steady state. Using the prop-
erty that kVk2 ¼ kV

Tk2 ¼ 1,

k~hðx; tÞ �
Xn

j¼1

eixt

kj þ ix
v jvT

j
~bk2 6
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min þx2
q k~bk2 ðA:5Þ

For a given tolerance tol, the time needed to wait until the
hydraulic head reaches quasi-steady state globally is,

T ¼ 1
kmin

log
k~bk2

tol �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

min þx2
q� �

0
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