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Oscillatory pumping wells in phreatic, compressible, and 
homogeneous aquifers 

G. Dagan1 and A. Rabinovich1 
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Abstract Oscillatory well pumping was proposed recently as a tool for hydraulic tomography. Periodic 
pumping at a few frequencies is carried out through vertical intervals along the pumping well and the peri-
odic head is measured along a few piezometers. The paper presents an analytical solution for the head field 
in an unconfined aquifer of finite depth under the common assumptions of a linearized water table condi-
tion, different horizontal and vertical constant permeabilities, constant specific storativity and water table 
drainable porosity, and small well radius to length ratio. The solution provides the expressions of the ampli-
tude and phase of the head as a function of coordinates, frequency, and the problem parameters. The solu-
tion simplifies to one pertaining to an upper constant head condition and a rigid aquifer for a wide range of 
the dimensionless frequency values. 

1. Introduction 

Pumping tests are one of the most common hydrological procedures used for characterizing aquifer proper-
ties. The basis is the solution of the flow equations which renders the head field in space and time; the 
measured values are used in an inverse mode in order to identify properties (conductivity, storativity). 

The standard procedure is to pump at a constant discharge and to measure the drawdown dependence on 
space and time, for which classical solutions as well as various extensions are available in the literature [see 
Kruseman and Ridder, 1990, for a compendium]. It is emphasized that for usual values of storativity and 
drainable effective porosity at the water table, the effect of the first is felt only at short times after inception 
of pumping. Furthermore, due to the linearity of the problem, all the aforementioned solutions are used for 
recovery as well. 

Recently, a method known as 3-D transient hydraulic tomography (3-DTHT) has been proposed for extend-
ing the pumping test as an identification tool by Cardiff and Barrash [2011] and Cardiff et al. [2012, 2013a]. 
By using packers and accurate sensors, the pumping at constant discharge is carried out from a few subin-
tervals of the well. Similarly the head is measured at various points along a few observation boreholes. 
While the solution for homogeneous aquifers is an easy adaptation of the previous ones, the more detailed 
information was employed by Cardiff and Barrash [2011] in order to identify the spatially variable conductiv-
ity in the covered volume, by a fully numerical solution, and numerical inversion. A recent development of 
hydraulic tomography known as oscillatory hydraulic tomography (OHT) is by a similar setup, but pumping 
is of time periodic discharge [see Cardiff et al., 2013b; Bakhos et al., 2014, and references therein]. One of the 
advantages of the procedure is that it adds an additional degree of freedom, by varying the frequency. 

We set as an objective to attack the problem of oscillatory pumping in unconfined aquifers by regarding 
the conductivity as random and deriving a semianalytical solution based on a first-order approximation in 
the log-conductivity variance, in the spirit of Dagan and Lessof [2011]. As a first step, we present here the 
simpler solution of periodic pumping in a homogeneous unconfined aquifer, extending that of Dagan 
[1967] and Neuman [1972]. Relevant existing articles are those of Black and Kipp [1981] and Rasmussen et al. 
[2003], yet these deal only with confined aquifers. A general approach to time-dependent pumping, of a 
numerical nature, was proposed recently by Mishra et al. [2013]. The aim of the present note is to take 
advantage of the simplifications which can be achieved for periodic pumping, to derive a semianalytical 
solution for an unconfined homogeneous aquifer, to achieve a few aims. First, the solution can be used as a 
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first step in order to attempt to iden-
tify effective aquifer properties by 
oscillatory pumping and serve as a 
benchmark for numerical solutions. 
Second, this is anyway a necessary 
step toward solving the more diffi-
cult problem of heterogeneous aqui-
fers. Third and most importantly, due 
to its simplicity, the solution allows 
to grasp the distinctive features of 
periodic pumping toward extensions 
and application. 

The  plan  of  the note is as follows:  
the problem is stated mathemati-
cally in the next section. Subse-
quently, the Green Function for a 
semibounded domain is derived 

explicitly and its properties are discussed and illustrated. Extension to a partially penetrating well pump-
ing in an aquifer of finite thickness is covered by section 4; the note is concluded by a Summary and 
Conclusions. 

2. Mathematical Statement of the Problem 

We consider an aquifer of unbounded horizontal extent in the x 
0 
; y 
0 

plane and  of  finite depth  D
0 
, with the  water  

table at rest at z 
0 
50 (see Figure 1). A partially penetrating well of radius r

0 
w and length L

0 
w lies along the z 

0 
axis at 

2D
0 

w < z 
0 
< 2D

0 

w1L
0

w . The aquifer is homogeneous and anisotropic of horizontal and vertical hydraulic conduc-
tivties Kh and Kv, respectively. The flow is governed by Darcy’s law and the mass conservation equation resulting in 
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where t 
0 

is time, H
0 ðx0 ; t 0 Þ is the pressure head, and s

0 
is the specific storativity. Assuming r

0 
w  L

0
w , we model 

as usual the well by a sink/source line and equation (1) becomes 
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(2) 

after incorporating the line source at x 
0 
50; y 

0 
50; 2D

0 
w < z 

0 
< L

0 
w2D

0
w , with v the Heaviside step function, d 

the Dirac operator, and Qwðt 
0 Þ, the well discharge divided by its length L

0

w . The free surface condition, 
assuming that the water table drop is small compared with the aquifer thickness at rest, is linearized [e.g., 
Dagan, 1964, 1966] to become 
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1Kv 

@H 
0 

@z 0 
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50 (3) 

where n is the effective porosity at the water table. Thus, equation (1) is satisfied now in the domain 
2D

0 
< z 

0 
< 0, rather than below the free surface, whose approximate elevation is given by z 

0 
5H

0 ðx 
0 
; y 
0 
; 0; t 

0 Þ: 
The aquifer bottom is assumed to be impervious and the head far from the well is constant, i.e., 

@H 
0 

@z 0 
50; z 

0 
52D 

0 
; H 

0 ! 0; R 
0 !1  (4) 

where R
0 
5ðx 

0 21y 
0 Þ1=2 . The well discharge is a periodic function of time which for simplicity is taken as har-

monic. It is convenient to represent the discharge/length as the real part of a complex variable 
Qwðt 

0 Þ5jQw j Re½exp ðix0 
t 
0 Þ, where jQw j is positive and constant and x

0 
is the frequency. After a sufficient 

long time from the inception of the pumping, the head becomes also harmonic and we consider here this 

Figure 1. Definition sketch of a partially penetrating well in an unconfined aquifer as 
formulated in section 2. 
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regime solely (a discussion of the transient regime is given by Bakhos et al. [2014]). We rewrite now the flow 
equations in terms of dimensionless variables defined by 
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where L is a reference length, unspecified at present. Substituting Qwðt 
0 Þ5jQw j exp ðixtÞ and (5) in (2–4), 

we arrive at the final set of complex equations 

ixsH2r 2H52 vðz1DwÞ2vðz1Lw 2DwÞ½ dðxÞ dðyÞ; z < 0 (6) 

ixnH1 
@H 
@z 

50 ; z50 (7) 

@H 
@z 

50; z52D; H ! 0; R!1  (8) 

remembering that H(R, t) is the complex phaser and not the actual head H
0 
5Re½H jQw jeixt=Khð5Þ. 

Among the various approximations implied by (6,7) the most stringent, one is the constancy of n. Indeed, 
due to the presence of the unsaturated zone, there is a delayed yield mainly during the drainage period, a 
topic of continuing research [e.g., see Moench, 1997; Mathias and Butler, 2006; Tartakovsky and Neuman, 
2007; Mao et al., 2011; Mishra and Neuman, 2011, for the case of constant discharge]. In spite of the advan-
ces in the field, the topic is still of debate and the results are not yet widely implemented in applications. 
The subject was not yet investigated for oscillatory pumping for which alternating periods of drainage and 
imbibition take place in the unsaturated zone. At present, a reasonable approximation is to assume a con-
stant effective n, say averaged over the period, which is nevertheless a function of x. We plan to investigate 
this topic in the future, but in the present note we assume that n is constant in space and time, yet possibly 
x dependent. Indeed, it is expectable that for high x the water table barely moves and behaves as a 
boundary of constant head, whereas for low x the effective porosity tends to its usual constant value per-
taining to instantaneous drainage. 

In order to solve the Helmholtz equation (6) for H(R, z) with boundary conditions (7,8), we take advantage of 
the linearity to proceed with deriving first the Green function in a semibounded domain, to be used in sec-
tion 4 for the formulation of the general solution. 

3. The Green Function (GF) for a Semibounded Domain 

3.1. General Solution 
The dimensionless GF GðR; z; z0Þ represents a pulsating source of unit strength in the domain z < 0, located 
at R 5 0, z5z0. It satisfies 

ixsG2r 2G52dðxÞdðyÞdðz2z0Þ; z < 0 (9) 

ixnG1 
@G 
@z 

50; z50 (10) 

The dimensionless complex head field H(R, z) for an aquifer of finite depth and a well of finite length is 
obtained by a linear operation upon G, as shown in section 4 in the sequel. Thus, the derivation of G is the 
key to the solution of the oscillatory well problem. 

The complex solution fulfilling (9) in an unbounded domain jzj < 1 is given in an analytical form by 
[Carslaw and Jaeger, 1959] (equation (10.4.12)) as follows 

G1ðR; z2z0Þ52 
1 

4pr 
e 2cr ; c5ði11Þa with a5ðxs=2Þ 1=2 i:e: 
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(11) 
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where r5 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
R21ðz2z0Þ2 

q
and the last three expressions are the real part, imaginary part and modulus of G, 

respectively. It is convenient to represent the solution of (9,10) [see e.g., Dagan, 1964] as 

G5G1ðR; z2z0Þ2G1ðR; z1z0Þ1gðR; z; z0Þ (12) 

where the first two terms represent the solution for a periodic point source near a boundary of constant 
head. By substitution in (9,10), the problem reduces to determining the regular function g in z < 0 which 
satisfies 

ixsg2r 2 g50; z < 0 (13)
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To derive g, we apply a Fourier-Bessel transform in the horizontal plane F̂ ðkÞ5ð2pÞ21Ð1
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b5 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ixs1k2
p 

5 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
2c21k2

p 
[Prudnikov et al., 1990, p. 189]. Solving the linear 

ordinary differential equation (16) with boundary condition (14) results in the solution for ĝ 

ĝ52 
1 

2pðixn1bÞ exp ½bðz1z0Þ (18) 

Inverting ĝ (18) results in the final semianalytical expression 

gðR; z1z0Þ52 
1 

2p 

ð 1 

0 

exp ½bðz1z0Þ 
ixn1b 

kJ0ðkRÞ dk (19) 

and the solution for G is therefore given by (12), (11), and (19). The real and imaginary parts of 
b are given by bR5½ðjbj21k2Þ=21=2; bI5½ðjbj22k2Þ=21=2; jbj5ðk41x2s2Þ1=4 which after substitution in 
(19) renders gR, gI, and  |g|. However, the expressions of G (12) can be simplified further as 
follows. 

The first component of (12), G1ðR; z2z0Þ represents a pulsating source at R 5 0, z5z0 < 0. In the immediate 
neighborhood of the singularity or for low frequency, for which cr ! 0, it simplifies to the steady state 
expression G1st52ð4prÞ21; r5½R21ðz2z0Þ21=2 which is real. 

The second term of (12), G1ðR; z1z0Þ stands for a pulsating source at R50; z52z0 reflection of the first 
source across the unperturbed water table and it is regular in the flow domain z < 0. 

Finally, the term g (19) encapsulates the impact of the water table via boundary condition (14). 
While it had a simple analytical expression for a sudden change of the discharge [e.g., Dagan and 
Lessof, 2011], it has to be evaluated by a quadrature for an oscillatory one. We found that for the 
large range of values of the parameters x, n, s of Figure 2, covering most conceivable applications, 
it can be approximated by its expression in an incompressible medium, i.e., s 5 0, for which b5k. 
Hence, (19) simplifies to 

gðR; z1z0Þ52 
1 

2p 

ð 1 

0 

exp ½kðz1z0Þ 
ixn1k 

kJ0ðkRÞ dk (20) 

which is adopted in (12) as a valid approximation of G in the rest of this work. The simplification of (19) 
achieved by (20) is in the separation of the real and imaginary parts of G, which now become 
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where a5ðxs=2Þ1=2 while jGj5½G2
R1G2

I 
1=2; phaseðGÞ5h5tan 21 GI=GRð Þ: 

The two asymptotic simple limits of g and G are: (i) xn  1 (confined aquifer and/or low frequency) in 
which case g ! 22G1ðr; z1z0Þ in (19,20) whereas G ! G1ðR; z2z0Þ1G1ðR; z1z0 Þ, the rigid wall (at z 5 0) 
solution. Since in this case it is reasonable that xs  1, the impact of storativity is limited and the solution 
tends to be the simple expression obtained by using G1st521=ð4prÞ (rigid medium). (ii) xn  1 (uncon-
fined aquifer and/or high frequency) for which in (12) g ! 0 and G ! G1ðR; z2z0 Þ2G1ðR; z1z0 Þ, i.e., the 
boundary z 5 0 is of constant head G 5 0, as if the aquifer is bounded from above by a reservoir of very 
large conductivity, of standing fluid. 

The intermediate cases of xn50ð1Þ requires the incorporation of g (20) in the solution, and its derivation is 
one of the main contribution of this study. 

3.2. Illustration and Discussion 
The Green Function is the building block of the complete solution, as shown in the next section, and it is 
instructive to illustrate its properties. Furthermore, by (5) H

0 ðR0 ; z 
0 
; t 
0 Þ5ðjQwj=KhÞRe½G eix

0 
t 
0 
 represents the 

head field for a partially penetrating well close to the water table, for sufficiently large distances (relative to 
L
0 
w ) from the well. Hence, the solution can be readily applied to such cases. 

Since for a semibounded domain, the only length scale of the problem is z
0 

0 < 0, the depth of the source, 
we take without loss of generality L52z

0 
0, i.e., z0 521. Then, it is seen that G (21) depends on R; z61 and 

the two parameter xs and xn: For the sake of the analysis, we prefer to select l5s=n5s
0 jz0j=n and ~ x5xn 

5x 
0 jz0 0jn=Kv as the two independent governing parameters. 

While the general solution (12) and either (19) or (20) can be readily used in applications, it simplifies even 
more for different regimes associated with ranges of values of the parameters ~ x and l. To illustrate them, 

Figure 2. Zones of validity of various approximations of the Green Function amplitude in the l; ~ x plane for z 5 2  1 and three values of 
the dimensionless R: (a) R50.2, (b) R51, and (c) R55. Arrows indicate the zone for which the error is less than 3%. The points pertain to 
the l; ~ x extreme values of the experiment at the Boise Hydrogeophysical Research Site. 
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we represent in Figure 2 the zones of validity of the various approximations for the amplitude |G| at  z 5 – 1  
(i.e., at the depth of the source, of maximal |G|), for the three representative values of R50:2; 1; 5: 

A first finding is that the approximation ~ x  1 (to the right of the green curve) pertaining to sufficiently high 
frequency for which g 5 0 in equation (12), i.e., constant head at z 5 0, applies to ~ x > 1; 4; 6 for Figures 2a– 
2c, respectively. This covers many conceivable values in applications. In contrast, for very low values of ~ x and 
for R 5 0.2,1 the approximation n 5 0 (left of black curve, confined aquifer) may apply. Combined with the 
approximation s 5 0, which is valid in this zone, G reduces to the simple expression of a source in a rigid and 
confined aquifer. This is consistent with the solution for constant rate continued pumping at large times. 
There is an intermediate zone of low ~ x values in which g has to be incorporated in the expression of G. 

Similarly, the approximation s 5 0 manifesting in the expressions of G1, which tends to 2ð4prÞ21 applies to 
a large domain of values of l and ~ x. In contrast, storativity has to be accounted for combinations of high 
frequency and low water table specific yield n. The latter may be related to the impact of the unsaturated 
zone which serves as a buffer and diminishes n at high frequency. In the border zones of the upper-right 
corners of Figures 2a and 2b, both approximations ~ x !1 and n ! 0 apply, i.e., the solution degenerates 
into G5G1ðR; z2z0Þ (11), pertaining to a pulsating source in an infinite domain and the water table pres-
ence is inconsequential. 

As mentioned in the introduction, hydraulic tomography by a step function discharge was conducted at 
the Boise Hydrogeophysical Research Site [Cardiff et al., 2013a]. An oscillatory tomography test is envis-
aged in the near future and a few various parameters were provided to the authors (W. Barrash, personal 
communication, 2014). For the sake of illustration, we have plotted in Figure 2 the two extreme combina-
tions of parameters values, though R were somewhat different from those of the figure. 

Though the complete expression of G (12) is not complicated, the discussion of the validity of various 
approximations carried out so far is relevant to the identification process, as it points out to regimes and 
zones in which the oscillatory pumping test is not helpful in determining some parameters. The discussion 
is also of interest in elucidating the impact of the water table. 

In a similar manner, the phase h of G (12) relative to that of the discharge, is represented in Figure 3 for the 
range of the more common values 1025 < l < 1023 , for z 5 – 1,  R50:2; 1; 5. In Figure 3a and 3b for which 

Figure 3. The Green Function phase at z 5 2 1 as a function of l and ~ x for three values of the dimensionless radius R: (a) R50.2, (b) R51, 
and (c) R55. 
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the approximation s 5 0 applies in most of the area, the phase is of low value relative to p. It is only for the 
less common values of large ~ x and large l (for which s plays a role) that the phase becomes sizable. The 
phase may be larger for R 5 5, but the amplitude is quite low there. 

4. Impact of Finite Depth and Finite Well Length 

Starting with the impact of the finite depth D, the solution for the Green function can be obtained by solv-
ing again equations (16) and (17) for ĝ, but after replacing (17) by dĜ=dz50 for z52D: The solution of the 
linear differential equation is easily obtained as 

ĝ52 
ebðz1z0Þ 

2pA 
1 

e22bD 

2p 
Bebz 2Ae2bz 

A1Be22bD 
½ e

bz0 

A 
2 

sinh ðbz0Þ 
b 

 where 

A5i ~x1b; B5i ~x2b; ~x5xn 

(22) 

which indeed tends to (18) for D !1. It is emphasized that in line with the simplification of (19) b should 
be replaced by k in most conceivable applications. 

The inversion of ^ g requires a quadrature over J0ðkRÞ (see 20) which can be simplified by carrying out first an 
expansion of (22) in e5 B=Að Þexp ð22bDÞ for D  1. Thus 
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 X1 

m50 

ð21Þ m e m (23) 

The series in (23) can be viewed as an array of singularities at z56z062mD, similarly to the case of constant 
recharge (Dagan and Lessof [2011]; Figure 2). The possible advantage of (23) upon (22) is the quick decay of 
the series and the possibility to use a few terms only. Thus, the leading order terms of expansion (23), for 
m 5 0 and singular at z56z022D, are given by 

ĝ ! 2 
ebðz1z0 Þ 

2pA 
2 

e22bD 

2p 

 
e2bðz2z0Þ 

A 
2 

e2bzsinh ðbz0Þ 
b 

 

(24) 

which leads to the Green Function (12) for infinite depth supplemented by the reflection of the three singu-
larities present in (12) across z52D. 

The next generalization is for a well of finite length extending over 2D
0 
w < z

0 
0 < 2D

0 
w1L

0
w . Taking for the 

reference length L5L
0
w , the pumping well length, we integrate first the water table contribution (22) to the 

Green function to obtain the general expression 

̂g 5 
ð 2Dw 11 

2Dw 

ĝðz; z0Þ dz052 
ebzðe2Dw 112e2Dw Þ 

2pbA 
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e22bD 
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e2Dw 112e 2Dw 
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cosh ½bðDw 21Þ 
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1 
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b 

) (25) 

where it is reminded that Dw 5D
0 
w=L

0 
w > 1 (Figure 1). Again g is obtained by inversion of the Fourier Bessel 

transform as in (20), with the simplification b5k in most applications. 

As for the Green Function in an unbounded domain (11), the integral of G1 ðrÞ, with  r5½R21ðz2z0Þ2 1=2; 
c5ði11Þðxs=2Þ1=2 is given by 

G1 ðR; zÞ52 
1 

4p 

ð 2Dw 11 

2Dw 

e2cr 

r 
dz0 (26) 

and it does not have an analytical expression and has to be carried out numerically. 

It is seen that the computation of the various terms of G (12) needs a quadrature. However, analytical 
expressions are available for a few limit cases of wide applications, as shown in the previous section. Thus, 
for s 5 0 (c50Þ; we get in (26) the well-known steady state expression 
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G st 
1 ðR; zÞ52 

1 
4p 

ð 2Dw 11 

2Dw 

1 
r 

dz052 
1 

4p 
ln 

z1Dw 212½ðz1Dw 21Þ 2 
1R2  1=2 

z1Dw 2½ðz1Dw Þ 2 
1R2 1=2 

(27) 

Finally, the head, solution of (2,3,4) is determined by (5) as follows 

H 
0 ðR 

0 
; z 
0 
; t 
0 Þ5Re 

" 
jQw j 

Kh 

GðR; zÞe ixt 

# 

(28) 

where the variables R
0 
; z 
0 
; t 
0 

are related to the dimensionless ones by (5). 

The application of the results to pumping tests is achieved by using different intervals along the pumping 
well, varying the discharge magnitude and frequency, and measuring the oscillatory head at various points 
along observations wells. Hydraulic tomography aims at identifying the spatial variation of K in the aquifer 
volume surrounding the pumping well (see references in Introduction). This has to be achieved by using 
the head signal and the solution of the flow problem in an inverse mode. In the similar problem pertaining 
to a stepwise discharge [Cardiff et al., 2013a], this has been achieved by a fully numerical approach which 
employs complex codes and requires significant computational power. 

The present study regards the aquifer as homogeneous and it is suggested that the simple solution pre-
sented here can be used as a first step toward identifying parameter average values, which may serve as a 
starting point for the tomographical investigation. Furthermore, the deviations of the measured heads from 
the computed ones are indicative of the degree of heterogeneity of the aquifer. Toward this aim, we remind 
that the modulus and the phase of the solution H

0 ðR0 ; z 
0 
; t 
0 Þ (28) depends on the following parameters (see 

5): Qw =Kh, Kv =Kh; x
0 
L
02 
w s
0 
=Kv ; x

0 
L
0 
w n=Kv ; D

0 
w=L

0 
w and D

0 
=L
0 
w: Among these parameters Qw, x

0 
; L
0 
w; D

0 
w and D

0 
are 

given input ones whereas Kv, Kh, s 
0 
, and n have to be identified with the aid of the measured jH0 j and phaseð 

H
0 Þ at different points of coordinates R

0 
; z 
0 
. 

5. Summary and Conclusions 

The paper derives an analytical solution of the head field in a homogeneous and anisotropic unconfined 
aquifer, pumped periodically by a partially penetrating well. It is assumed that pumping takes place a suffi-
ciently long time to render the solution periodic. The simplifying assumptions are the ones usually adopted 
in the literature for the common constant discharge test: the well radius is much smaller than its length, the 
free surface condition is linearized, anisotropy principal axes are horizontal and vertical, specific storativity s 
and water table effective porosity n are constant. Periodic pumping provides an additional degree of free-
dom by varying the frequency x, which allows for regarding n as frequency dependent. 

An analysis of the dependence of the head amplitude and phase on the various parameters of the problem 
permits to delineate ranges of values for which the solution at a given point simplifies to those pertaining 
to a rigid aquifer (s 5 0), to a constant head boundary or a rigid wall (n50Þ upper boundary condition. Gen-
erally, the water table has a large impact on the head making the present solution a useful one in applica-
tions. Furthermore, it is found that for a large range of parameter values the assumption of constant head 
boundary, rather than an impervious one, is applicable. The storativity has generally a smaller impact except 
for high frequency and for zones close to the well and the bottom. The phase of the head relative to that of 
the pumping is significant in the neighborhood of the water table or in zones in which s is dominant. 
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