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Estimating Unsaturated 
Hydraulic Functions for Coarse 
Sediment from a Field-Scale 
Infiltration Experiment
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Bradford, and Jodi Mead
Conglomeratic alluvial sediments (sand–gravel–cobbles) are common 
in fluvial, periglacial, and tectonically active regions but have received 
little attention with respect to unsaturated flow, specifically moisture–ten-
sion–conductivity relationships, due to difficulty in making measurements in 
the field or laboratory and lack of agricultural value. We used a field-scale 
infiltration experiment, a one-dimensional layered forward model, and 
parameter estimation modeling to examine in situ flow behavior between 
residual and partial saturation in a four-layer system under steady infiltra-
tion (0.84 cm h−1) for 19 h. Prior information from ground-penetrating radar, 
grain-size distributions from core samples, and long-term tension (y) and 
moisture (q) monitoring were used to define geologic structure, simulate 
test behavior, and provide initial parameter estimates. Vertically distributed 
measurements of y(t) and q(t) from the experiment were matched using 
four parameters (qs, a, n, and Ks) of the van Genuchten–Mualem (VGM) 
relationships for each material layer and a Metropolis–Hastings (MH) search 
with multiple, independent-chain runs to 106 samples each. Scale reduction 
factors indicated convergence of independent chains for 11 of 16 parame-
ters. Final distributions of individual parameters varied from normal to nearly 
uniform distributions, and some parameter pairs showed high cross-correla-
tion (R2 > 0.9). Results showed that  (i) VGM relationships can be applied to 
these coarse, conglomeratic soils to characterize unsaturated flow behavior 
across the natural range of partial saturation, (ii) even under high sustained 
infiltration rates, these coarse conglomeratic soils remain well drained, 
despite relatively low porosity and significant cobble fraction, and (iii) high 
uncertainty and nonconvergence of MH chains does not lead to significant 
misfit of the observed data. These findings imply that a significant cobble 
fraction does not markedly reduce infiltration at low saturation levels that 
develop under natural recharge conditions.

Abbreviations: AT, advanced tensiometer; BHRS, Boise Hydrogeophysical Research Site; 
bls, below land surface; GPR, ground-penetrating radar; MH, Metropolis–Hastings; VGM, 
van Genuchten–Mualem.

In many arid and semiarid regions, high-energy riparian areas, and large out-
wash plains, considerable portions of the surface and subsurface are covered by stony soils 
or coarse (conglomeratic) alluvial sediments that contain significant fractions of large clasts 
or rock fragments with grain size diameter (d) >2 mm (Miller and Guthrie, 1984; Cousin 
et al., 2003). These conglomeratic alluvial soils, by which we mean alluvial sediments with 
composition from sand to gravel to large cobbles (d > 10 cm) with little pedogenesis, have 
previously received little attention concerning unsaturated flow because they are not well 
suited for agriculture and are often present in underdeveloped landscapes (e.g., desert, 
periglacial, and floodplain environments). With recent population increases has come 
sprawl into regions where these alluvial soils dominate, and there has been an increasing 
interest in the unsaturated flow properties of these materials.

A field-scale infiltration experi-
ment was conducted in coarse 
conglomeratic soi l with high 
gravel fraction. Unsaturated flow 
properties were estimated from 
modeling of inf i lt ration using 
the van Genuchten–Mualem 
model and a Metropolis–Hasting 
optimization scheme. Results pro-
vide optimal unsaturated flow 
parameters for a soil type that 
is underrepresented for vadose 
zone flow.
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The presence of rock fragments in soil has been linked to significant 
alterations to water flow mechanics and soil heat flux in the vadose 
zone (Cousin et al., 2003), with particular focus given in the fields 
of contamination and mine waste (Corwin et al., 1999; Dann et al., 
2009; Milczarek et al., 2006), radioactive waste storage (Oostrom 
et al., 2009, 2011; Tokunaga et al., 2003), artificial groundwater 
recharge (Hendrickx et al., 1991), hillslope erosion (Cerdá, 2001; 
Sauer and Logsdon, 2002), and geotechnical engineering (Zhang 
and Chen, 2005). Several studies have also addressed the influence 
that stone fragments have on infiltration and available water con-
tent in stony soils. Mehuys et al. (1975) published some of the first 
research on the effects of rock fragments on unsaturated hydraulic 
properties and concluded that their presence strongly affects mois-
ture content (q) and saturated hydraulic conductivity (Ks). Since 
then, other studies have looked at the influence of stones but have 
been primarily focused on the determination of saturated param-
eters (e.g., Ks) or available water content (Cerdá, 2001; Cousin et al., 
2003; Hendrickx et al., 1991; Sauer and Logsdon, 2002; Tetegan 
et al., 2011). Peck and Watson (1979) and Bouwer and Rice (1984) 
developed pedotransfer functions for determining the unsaturated 
hydraulic properties of stony soils based on the hydraulic properties 
of the fine-grained matrix (d < 2 mm) and the proportion of rock 
fraction (d > 2 mm). Dann et al. (2009) showed that the parameters 
identified using the fine-grained material, with a correction made 
for gravel content, can be successfully applied to field-scale studies, 
but they emphasized the need for in situ studies on bulk material.

Milczarek et al. (2006) and Ma et al. (2010) both focused on esti-
mating unsaturated soil parameters (particularly the curve shape 
parameters a and n) of coarse materials (sand and gravel) using 
repacked soil columns while varying the proportion of rock frag-
ments, but they could not determine a clear relationship between 
the parameter values and the rock fraction. Ma et al. (2010) further 
suggested that field experiments were essential to provide insight 
into parameter estimation in stony soils, and other researchers have 
also suggested that the methods used on soil samples or simulated 
soil structure are not sufficient to represent field conditions (e.g., 
Dann et al., 2009; Laloy et al., 2010; Ritter et al., 2003; Wohling 
and Vrugt, 2011). Numerous studies have been published on 
obtaining the in situ hydraulic properties of agricultural soils but, 
to our knowledge, only a few sets of unsaturated hydraulic proper-
ties have been published for coarse stony soils (e.g., Milczarek et al., 
2006; Ma et al., 2010; Dann et al., 2009), and most have expressed 
the need for validation from in situ studies. Furthermore, few stud-
ies have looked at in situ properties of such coarse conglomeratic 
soil as that which we considered in this study.

Many of the previous studies involving stony soils were based on 
either simulated soils or experiments performed on reconstructed 
soil cores or columns. These methods have been preferred in 
unconsolidated soils because of difficulties associated with 
obtaining intact, representative soil samples in coarse alluvial 
soil. When collecting samples, it is important to capture the 

heterogeneity of a nonuniform soil, but, because coarse alluvial 
soils can range in grain size from fine sand or silt to gravel and 
cobble, representative sample volumes may need to be quite large, 
which would be logistically difficult to obtain and then perform 
laboratory tests (Dann et al., 2009; Dunn and Mehuys, 1982; 
Zhang et al., 2011). Field methods eliminate sampling bias but 
are difficult in coarse alluvial soils because issues often arise with 
obtaining proper instrument contact with the soil structure, 
minimizing disturbance to the soil, and ensuring that sensors are 
capturing the heterogeneity caused by grain size variation (Cousin 
et al., 2003; Edwards et al., 1984; Ma et al., 2010). Also, where 
these soils are poorly consolidated, excavating an open pit face 
or borehole can be difficult and even hazardous. Despite efforts 
to characterize the unsaturated hydraulic properties of coarse 
alluvial soils, there is still a lack of sufficient data to allow general 
relationships about the hydraulic properties of these soils to be 
inferred, specifically at field scales (Cousin et al., 2003; Ma et al., 
2010), and there have not been sufficient data published to allow 
property values to be estimated from a literature search or from 
pedotransfer functions, in contrast to what is available for typical 
agricultural soils (e.g., Rawls et al., 1982; Carsel and Parrish, 1988; 
Leij et al., 1996).

In this study, we performed a field-scale infiltration experiment 
in a heterogeneous, conglomeratic, alluvial sediment sequence 
that ranged in composition from fine–medium sand to mixed 
sand and large cobbles (d > 20 cm). Both volumetric soil mois-
ture (q) and soil tension (y [L]) were measured in situ and used to 
predict the parameters for the van Genuchten–Mualem soil char-
acteristic functions (van Genuchten, 1980). These data were used 
with a one-dimensional unsaturated flow model (HYDRUS-1D; 
Šimůnek et al., 2005) combined with a computationally intensive 
Metropolis–Hastings search method (Metropolis et al., 1953; 
Hastings, 1970) to optimize the parameters and estimate param-
eter distributions and correlation. The main purposes of this work 
were to: (i) quantitatively characterize the unsaturated hydraulic 
properties of conglomeratic, unconsolidated, alluvial soil in situ 
based on a field infiltration experiment; (ii) determine whether 
a soil hydraulic model developed for agricultural soils, the van 
Genuchten–Mualem (VGM) model, can be used to predict unsat-
urated behavior in such a soil without explicitly accounting for 
the influence of gravel and cobbles; and (iii) provide insight into 
parameter correlation and variance under natural field conditions 
given limited data.

 6Experimental Setting
The setting for the infiltration experiment was the Boise 
Hydrogeophysical Research Site (BHRS) located 15 km south-
east of downtown Boise, ID. The site covers 0.036 km2 of a gravel 
bar adjacent to the Boise River (Fig. 1). The upper 18 m of the 
gravel bar consists of coarse, unconsolidated mixed sand, gravel, 
and cobble deposits with interbedded fine to coarse sand lenses 
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and underlain by an extensive clay–basalt boundary (Barrash et 
al., 1999). There is little to no pedogenesis at the site except in 
low-lying areas upstream from the main well field and along the 
river edge, where the surface becomes inundated during seasonal 
flooding. In these areas, surface sediments are primarily sand, 
gravel, and cobbles but contain a thin surface layer of silt/sand and 
organic detritus but still no distinct soil horizons. Across the site, 
the sediment supports vegetation, which includes grasses, shrubs, 
and deciduous trees, hence our classification of it as an alluvial 
soil. Vadose zone thickness varies with topography and seasonally 
with river stage from ?3 m during winter to between 1.5 and 2 m 
during the summer, when the river stage is higher.

The vadose zone composition is identical to the aquifer composition, 
which has been extensively studied using numerous hydrologic and 
geophysical experiments that have identified layered stratigraphy 
within the aquifer and led to a highly characterized subsurface in 
terms of saturated properties and material distributions (Barrash 
and Clemo, 2002; Barrash and Reboulet, 2004; Moret et al., 
2006; Dafflon et al., 2011; Bradford et al., 2009; Clement and 
Barrash, 2006; Clement et al., 2006; Mwenifumbo et al., 2009; 
Slater et al., 2011). Porosity estimates vary across the site but are 
generally between 10 and 30% in stratigraphic units identified 
as mixed sand/gravel/cobble, and up to 50% in sand lenses 
(Barrash and Clemo, 2002). A number of techniques have been 
used at the BHRS to estimate Ks, and average values per well or 
stratigraphic unit range from 0.005 to 1.6 cm s−1 (Barrash et al., 
2006; Malama et al., 2011; Cardiff et al., 2011, 2012; Straface et al., 
2011). More recently, research at the BHRS has been extended into 
aquifer–atmosphere interactions, including investigations of the 
evapotranspiration effects on water table drawdown (Malama and 
Johnson, 2010; Johnson et al., 2013a) and vadose zone hydrology 
(e.g., this study).

Tensiometers were used to measure the soil tension (y) at the 
BHRS and were installed as vertically distributed nests using 
advanced tensiometers (ATs) (Sisson et al., 2002) and a back-fill 
method well suited to unconsolidated soils that results in very little 
disturbance of the surrounding material (similar to Hubbell and 
Sisson [1998] and Cassel and Klute [1986]). Each set was installed 
as paired shallow and deep nests consisting of four deep (AT1–
AT4) and five shallow (AT5–AT9) ATs, with vertical spacing of 
0.2 to 0.3 m between sensors. Two of the three tensiometer sets 
(TX5B shallow and deep and TX5A shallow and deep) were moni-
tored in this study, with TX5B located within the infiltration site 
and TX5A acting as a control (Fig. 1 inset).

Previous analysis of tensiometer data has shown that the ATs 
require tension offsets (i.e., constant tension correction that must 
be applied to each sensor after installation), which are generally 

<15 cm and are quasi-stable for time periods of weeks to months 
but can fluctuate by ±5 cm in that same time period (Aishlin et 
al., 2013). The magnitude and variability of AT offsets are small 
compared with changes due to natural hydrologic events (e.g., rain, 
changes in water table elevation, or seasonal drying) or experienced 
during the test (Aishlin et al., 2013). Uncertainties in AT offsets 
were later incorporated into the test modeling as instrument errors 
expressed in the data covariance.

Soil moisture at the BHRS has been measured using a CPN 503DR 
neutron hydroprobe at several access tubes located across the site. 
From the summer of 2010 until January 2012, vertical profiles of 
the entire vadose zone were collected at 2-wk intervals at each of 
the five access tubes. Moisture data (q) showed strong seasonal 
trends of dry soil during hot, dry summer months and wetter soil 
during cooler, wetter months from fall through spring (Johnson et 
al., 2013b). Two neutron sites were monitored during the experi-

ment at 1-h intervals: NX5B is located within the 
infiltration test area and NX5A is nearby to provide 
a control (Fig. 1 inset).

 6Preliminary Work
Tensiometer nests TX5BD (deep) and TX5BS 
(shallow) and neutron access tube NX5B were 
installed in the spring of 2011 at a location consist-
ing of heterogeneous stratified material. Large-scale 
structure was interpreted from analysis of high-
resolution ground-penetrating radar (GPR) data 
collected in the summer of 2010, which identi-
fied a sand channel aligned east–west with lateral 
dimensions of approximately 5 by 3 m and thick-
ness ranging from 0.2 to 0.5 m (Fig. 2) and thinning 
to the southeast. The channel lies between coarser, 
mixed sand–cobble materials above and below. The 
TX5BD, TX5BS, and NX5B instrumentation were 
installed along the long axis of this channel, with 

Fig. 1. Areal view of the Boise Hydrogeophysical Research Site showing water monitoring 
wells and (inset) detailed schematic of infiltration setup showing locations of hydrologic 
and geophysical measurements (crosses correspond to rain bucket locations).
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a horizontal spacing of 1 m between 
each installation (Fig. 1 and 2).

Before installation of TX5BD and 
TX5BS, soil cores were extracted at 
these locations. Cores were separated 
into material samples based on visual 
composition breaks or, for longer sec-
tions where no clear breaks could be 
identified, into 15.25-cm (6-inch) 
samples. Core samples were sieved 
with mesh diameters (d) between 
190 and 0.0625 mm (in the method 
of Reboulet and Barrash, 2003) to 
develop grain size distributions and 
to characterize the soil type (Fig. 3). 
The maximum sampled grain size of 
these cores was limited by the diam-
eter of the core sample (15.25 cm), but 
large cobbles (d > 20 cm), which con-
stitute a major portion of the aquifer 
material, are ubiquitous and underrepresented by this method. 
Most samples ranged from 50 to 70% (w/w) gravel or cobble (d 
> 2 mm), with almost no material of silt or finer size (d < 0.0625 
mm), and were characterized as mixed sand/gravel. Three samples 
were dominantly sand; of these, Sections 5S0203 (z = 0.86–0.91 
m below land surface [bls]) and 5D0202 (z = 0.73–0.91 m bls) 
from tensiometer nests TX5BS and TX5BD, respectively, were 
classified as fine–medium sand (80% < 2 mm) and contained 
only small amounts of silt (<5%) and gravel (<15%). Section 
5S0202 (z = 0.66–0.86 m bls) from TX5BD was classified as 
coarse sand and contained ?20% gravel. No material similar to 
5S0202 was identified in the cores from TX5BD. The depths of 
these sand samples were all between 0.7 and 1.0 m bls, which 
corresponds to the depth of the sand channel identified from 
the GPR data. Similar materials from 5S0203 and 5D0202 were 
interpreted as a continuation of the same unit, but 5S0202 was 
interpreted as a local lens, which was confirmed by the GPR data 
(Fig. 2). Core analysis and stratigraphy from TX5BS were used to 
determine material distributions for the unsaturated flow model 
(discussed below).

 6Pre-Test Simulation
Before the field experiment, HYDRUS-1D was used to simulate 
infiltration and provide first-order estimations of the optimal rain 
application rate (P, cm h−1) and the time required to reach steady 
state (i.e., continuous flow through the entire vadose zone). The 
simulation model was set up as a one-dimensional, vertical model 
consisting of three material layers based on GPR data and soil core 
analysis: Material 1 (M1), mixed sand and gravel; M2, sand; and 
M3, mixed sand and gravel. The VGM models were used for q, y, 
and K relationships:
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Fig. 2. Two-dimensional ground-penetrating radar survey along long axis of channel showing reflections 
associated with distinct sediment transitions inferred as a depositional sand channel (dashed lines) and 
locations of TX5BS and TX5BD tensiometers (squares) and moisture measurements (circles).

Fig. 3. Grain size classification of TX5B shallow and deep core sam-
ples: gravel (>2 mm), coarse sand (>0.25 mm), and fine sand (<0.25 
mm). The sand channel is represented in core samples between the 
0.75- and 1.00-m depths.
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1 1m n= -  [4]

qr is the volumetric residual moisture content, qs is the volumetric 
saturated moisture content, a (cm−1) and n (dimensionless) are 
empirical parameters that are linked to the capillary height and 
pore size distribution, respectively, but often are treated as shape 
parameters, Ks (cm s−1) is the saturated hydraulic conductivity, and 
l (dimensionless) is related to the soil pore tortuosity but is often 
given an assumed constant value of 0.5 for most tests (Šimůnek et 
al., 2005) and is far less sensitive than the other parameters (Abbasi 
et al., 2003).

The material properties of M1 and M3 for the test simulation 
were estimated from y(t) data collected in TX5A during natural 
rain events in December 2010 and those of  M2 from laboratory 
infiltration experiments conducted on sand core sample 5D0202 
(both methods discussed below). The simulation model was used 
to aid in test design and to confirm that the desired P would not 
exceed saturated hydraulic conductivities (i.e., no ponding above 
any layers) and would reach steady state in an acceptable length 
of time. These simulations indicated that a rate of P = 1 cm h−1 
would require ?24 h to reach steady state and would be sufficient 
to allow continuous flow through the entire vadose zone at rates 
less than the minimum Ks of any of the layers. This optimal P is 
much higher than average storms for the Boise area but not uncom-
mon for high-intensity storms, the kind that are more likely to 
produce flooding and other hazardous conditions, although such 
storms never exceed a few hours in duration.

 6Winter 2010 Rain Modeling
In December 2010, several rain events produced observable y(t) 
responses in TX5AS and TX5AD, both of which are near the 
infiltration test location but outside the wetted perimeter of the 
experiment. For these events, P averaged ?0.25 cm h−1 and storms 
lasted several hours (Fig. 4). Data from four ATs between 0.47 
and 1.92 m bls were used to estimate the unsaturated hydraulic 
properties of the soil surrounding TX5AS and TX5AD using 
HYDRUS-1D. Two-dimensional GPR ref lection surveys col-
lected for a different purpose near TX5AS and TX5AD show a 
clear, continuous reflection within the vadose zone, which was 
inferred to be a material horizon. This led to the use of a two-
layer model for simulation of the December 2010 rain response, 
with both layers interpreted as mixed sand and gravel but with 
different VGM parameter values allowed for each. The observed 
tension responses from TX5AS and TX5AD (Fig. 4) were used to 
optimize the parameters using Monte Carlo sampling along with 
trial-and-error adjustments. The root mean squared error between 
the observed and simulated y(t) was used to determine the optimal 
parameter values, which are shown in Table 1. Final optimal values 
were within the range expected for sandy soils (for parameters a 
and n) and BHRS sediments (for parameters qs and Ks). In-depth 
statistical analysis of the soil parameters was not performed for 

these data because the goal of this modeling was to quickly provide 
initial estimates of vadose zone properties at the BHRS for use in 
the pre-test simulations.

 6Sand Core Properties
The high-resolution GPR reflection surveys conducted over the 
infiltration site indicated that the fine–medium sand zone did 
not extend into the area of TX5AD where the December 2010 
rain responses were modeled. Correct simulation of the infiltra-
tion experiment thus required inclusion of the effects of this 
distinctly different material. To obtain an initial estimate of the 
parameters, the fine–medium sand core sample (5D0203) was 
repacked into a 5.08-cm i.d. clear polyvinyl chloride tube, com-
pacted to a length of 16 cm to achieve approximately the same 
volume as the original core sample, and placed under an array 
of greenhouse misters. The top of the core was left open and the 
bottom was supported with a fine mesh screen. Water was applied 

Fig. 4. Results of modeling the winter 2010 rain events measured by 
tensiometer set TX5A, showing observed and predicted tension (y) 
responses to several rain events.

Table 1. Optimal van Genuchten–Mualem volumetric saturated soil 
moisture (qs), saturated hydraulic conductivity (Ks) and shape param-
eters a and n from both the winter 2010 rain modeling and core 
laboratory tests.

Material Method qs a n Ks

cm−1 cm s−1

Material 1 winter 2010 rain response 0.31 0.22 2.46 0.239

Material 2 winter 2010 rain response 0.27 0.22 1.72 0.150

5D0203 core laboratory test 0.33 0.30 2.96 0.0045
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to the top of the tube at a rate of P = 5.0 cm h−1 for ?1 h, and the 
times when the wetting front arrived at five chosen vertical loca-
tions along the length of the tube were measured. The initial q 
was assumed to be near zero for the oven-dried sample, and final 
q was determined by the weight of the wet soil column minus 
the dry sample weight (final q » 0.36). Core porosity was esti-
mated from the volume of the dry material (assuming a material 
density of 2.6 g cm−3 for quartz sand) divided by the volume of 
the intact core. The estimated porosity was 0.41, which is within 
the range of porosity estimates of BHRS sand zones (Barrash 
and Clemo, 2002).

Parameter values for the core material were initially determined 
using the Rosetta Neural Network Prediction module built into 
HYDRUS-1D with inputs of sand, silt, and clay contents (85, 
15, 0%, respectively) and a bulk density of 1.45 g cm−3 as mea-
sured from the sample dry weight divided by the core volume. 
The q s value (i.e., the effective porosity) predicted from Rosetta 
was within 0.01 of the estimated porosity (0.41), and param-
eter values predicted by Rosetta were used in HYDRUS-1D to 
simulate the wetting front propagation along the column. The 
model top boundary was set as a specified flux equal to 5.0 cm 
h−1, and a free drainage boundary was prescribed at the bottom. 
The model-predicted times when the wetting front passed five 
locations (twf) were compared with the actual times measured 
in the laboratory. The calculated twf using the Rosetta-predicted 
values were all within 4 min of the observed twf at all measure-
ment locations (Fig. 5), with a correlation coefficient (R2) of 0.98. 
These Rosetta-predicted parameter values (Table 1), although 
representing properties of a reconstructed core and not in situ 
properties, were used in the pre-test simulation and also to pro-
vide a starting point for optimization of the infiltration test. As 
with the December 2010 modeling, an extensive analysis of the 
parameters was not performed because it was not the focus of 
this experiment.

 6Field Infiltration 
Experiment Setup
A 5- by 2-m area surrounding installations TX5BS, TX5BD, and 
NX5B was used for the infiltration test (see Fig. 1 inset); these 
dimensions allowed wetting to surround the area of all three instal-
lations by ³1 m. During the experiment, the infiltration site was 
covered with waterproof canopies and surrounded with waterproof 
tarps to minimize the effects of evaporation and wind redistribu-
tion. Water was applied using 66 Agrifirm 0.5 GPH Turbo-Flo 
mist nozzles placed 1.5 m above the land surface in a staggered grid 
pattern (0.5 m between misters on a single row and 0.35 m between 
rows) to provide optimal coverage. There are several advantages to 
using these mist nozzles rather than more conventional sprinklers 
or drip lines: (i) the small droplet size minimizes impact effects; 
(ii) they can be placed at any height above the land surface, which 
allows access beneath the misters and direct measurements of P 
at the soil surface; (iii) the application rate can be easily adjusted 
by changing either the incoming water pressure, the nozzle 
height above the ground, or the nozzle spacing; (iv) nozzles are 
interchangeable and available with different flow rates, allowing 
a further range of application rate; and (v) they are inexpensive 
and can be obtained from most irrigation supply distributers. The 
precipitation rate was measured using four tipping buckets, cali-
brated before and after the experiment, placed on the land surface 
within the application area and connected to a Campbell Scientific 
CR1000 datalogger. Water supplied to the misters was extracted 
from Well C6, which is 35 m from the infiltration site. With the 
low pumping rate (<19 L h−1), fully screened well, and high-Ks 
aquifer, water table drawdown (Dwt) near the infiltration site 
caused by pumping was not measurable (Dwt < 0.31 cm) during 
the test.

The infiltration experiment began on the morning of 1 Aug. 2011 
at 1130 h. Campbell Scientific CR1000 dataloggers were used to 
record y in tensiometer sets TX5A and TX5B with a measurement 
frequency of 3 min, and full vertical q profiles were collected every 
1 h in NX5A and NX5B. The NX5A site and TX5A set (consisting 
of nests TX5AS and TX5AD) were outside the infiltration area 
but within 2 m of the perimeter and were monitored to observe 
background changes in q and y and to confirm that water was 
not migrating laterally beyond the application area. Water table 
depth was measured in Well X5 (<4 m from the infiltration area) 
at 4-h intervals and showed no change throughout the experiment. 
Tensiometer data were output in real time to laptops set up in a 
tent adjacent to the test area to monitor progress. After ?19 h, it 
was decided that vertical y and q profiles had reached steady state 
under wet conditions (pre-test simulations predicted ?24 h), and 
after waiting another 4 h, the misters were turned off on 2 Aug. 
2011 at 0721 h. For approximately 11 h after turning off the mis-
ters, all measurements were recorded at the same time intervals 
and by the evening of 3 Aug. 2011, much of the equipment was 
removed and q measurements were expanded to two to three times 

Fig. 5. Calculated wetting curves at observation nodes (solid lines) 
and observed wetting front times (circles and vertical dashed lines) 
from the sand core rain test performed on core sample 5D0203. Leg-
end shows depths of wetting front passage measurement locations; 
tick bands on circles show ±4 min error.
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per day until 5 Aug. 2011. Measurements of y continued at 3-min 
intervals until 5 Aug. 2011. Long-term y and q data later showed 
that soil moisture did not return to pre-test values until >1 wk after 
rain application ceased.

In addition to hydrologic measurements, two-dimensional, multi-
offset GPR ref lection and three-dimensional dipole–dipole 
electrical resistivity surveys were collected every hour during the 
infiltration experiment from 1 through 3 Aug. 2011. The GPR sur-
veys were collected along the main transect of the installations using 
shielded antennas, and the ends of this transect extended beyond 
the wetted area. The resistivity survey also extended beyond the 
wetted perimeter to delimit the wetted perimeter and to observe lat-
eral moisture migration, if any. Initial review of the resistivity and 
GPR data, along with tension measurements in set TX5A and mois-
ture measurements in NX5A (not shown), confirmed that there was 
no observable lateral migration of water outside the application area.

 6 Infiltration Test Results
The four rain buckets recorded recognizably different P values 
within the experiment boundary (Fig. 6). Buckets 1 and 4 showed 
mean P values of 1.67 and 1.59 cm h−1, respectively, with standard 
deviations (s) of 0.31 and 0.59 cm h−1, while Buckets 2 and 3 (the 
two buckets closest to TX5BS, TX5BD, and NX5B) showed con-
siderably less noise in the measurements (s  < 0.14 cm h−1 for both) 
and mean P values of 0.77 and 0.92 cm h−1, respectively. Higher s 
values from Buckets 1 and 4 were probably the result of the buck-
ets being jostled or becoming tilted during the experiment, as they 
were located closer to the edge of the application plot where there 
was considerable foot traffic related to geophysical data collection 
and other logistics. For that reason, 
we used a constant P of 0.84 cm h−1 
(2.3 ´ 10−4 cm s−1) determined from 
the mean of Buckets 2 and 3 as the 
upper boundary flux in the infiltration 
model because these two buckets were 
located closest the measurement loca-
tions. Note that this precipitation rate 
is far less than the previously estimated 
Ks of any of the materials (Table 1) but 
still much greater than natural precipi-
tation rates and durations (e.g., events 
described for winter 2011 modeling 
above). This was an essential part of the 
experiment to avoid oversaturation of 
sediments and ensure continuous flow 
through all layers.

Measurements of q were taken in 
NX5B and NX5A from 0.15 m bls to 
just above the water table (?1.5 m bls) 

with vertical spacing of 0.15 m (0.5 ft). Four q(z) and y(z) pro-
files from selected times during the experiment are shown in 
Fig. 7. Figure 7A shows initial q(z) and y(z) profiles and Fig. 7D 
shows the first measurements after steady state was reached and 
before ending the rain application. Long-term y(t) and q(t) data 
from the beginning of the experiment until several days after are 
shown together in Fig. 8 for different tensiometer depths and 
comparable q measurement depths (vertical differences between 
y and q measurements in Fig. 8 are <20 cm). Raw y(t) data before 
and during the arrival of the wetting front had a s of ?2 cm for 
all tensiometers, but y(t) data after steady state had been reached 

Fig. 6. Rain application rate from the four rain buckets; solid lines are 
mean values and dashed lines are ±s.

Fig. 7. Soil moisture q(z) and tension y(z) profiles at select times during the experiment: (A) initial pro-
files, (B,C) during the test, and (D) steady state.
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became noisier and s values increased to 12 to 14 cm for all ten-
siometers except AT7 and AT9. All y(t) data were processed by 
averaging each data point with the previous and following points 
(three measurements or a 9-min window) to reduce noise. This 
averaging reduced s for the y(t) data to near 2 cm for all tensi-
ometers but did not significantly affect the timing of the arrival 
of the wetting front or the shape of the transient portions of the 
y(t) curves. The y(t) measurements at AT7 are not included in 
the results or in the modeling due to questionable behavior before 
the start of the experiment, probably related to a damaged AT 
sensor or housing.

Comparison of wetting front arrival times between y(t) and 
q(t) shows that there was a significant delay (?6 h) in the q(t) 
response at the depths of sensors AT6 and AT5 compared with 
the y(t) response (Fig. 8), which is much more of a delay than 
would be expected by differences in depths between the two 
sets of measurements (<20 cm). Although not shown, y(t) data 
recorded by AT4, located slightly above AT5 but 1 m closer to 
NX5B (see Fig. 2), were also delayed in arrival of the wetting 
front compared with AT5 by ?3.6 h. We suspect that the pro-
gressively greater delay was due to lateral variation in Material 
M3 thickness between TX5BS and NX5B (see Fig. 2) because 
AT6, AT5, and the corresponding q measurements are located 
below the fine–medium sand layer observed from core samples 
and GPR data. The GPR data along with core samples from 
TX5BS and TX5BD showed that the fine–medium sand sec-
tion is 7 to 12 cm thicker at TX5BD than at TX5BS and that 
the medium–coarse sand section (5S0202) is completely absent at 

the location of NX5B. The variable thickness of the fine–medium 
sand zone between TX5BS and NX5B combined with the lower 
Ks of this material (see Table 1) were probably causing the delay 
in wetting front propagation between TX5BS and NX5B. The 
significant difference in the response time between y and q data 
at similar depths excludes the use of simpler methods of optimiz-
ing the VGM parameters through direct fitting of the observed 
q(y) data as other studies have done (e.g., Vrugt et al., 2003a; 
Milczarek et al., 2006).

 6 Infiltration Test Model
Albeit with recognition of the apparent lateral heterogeneity just 
described, we modeled the infiltration experiment over TX5BS 
using the HYDRUS-1D model as a first approximation and 
base case to compare with more detailed modeling to follow 
(which will include two-dimensional distribution of materi-
als and geophysical data). Because the heterogeneity limits the 
use of simultaneous y and q data in a one-dimensional model 
to optimize parameters, we focused on fitting y(t) data from 
TX5BS and include only an initial q measurement (before the 
start of the test: qdry) and final q measurement (after the wet-
ting front had passed and steady-state flow had been reached: 
qwet) for three q measurement depths corresponding to separate 
material layers. Tension data were chosen as the primary data 
to fit because they provided a sharper transition from dry to 
wet conditions and thus a better representation of the wetting 
front arrival than the moisture data, and tension data errors 
are smaller relative to the total change in tension than mois-
ture data. Including qwet and qdry was done to achieve a better 
representation of the soil properties because it forced the model 
to find curves that pass through q(y) points of the initial and 
steady-state observations, thus providing further constraint. In 
this regard, Zou et al. (2001) have shown that including only 
initial and final moisture measurements in wetting experiments 
can increase parameter predictability.

Material distributions for the infiltration test model were simi-
lar to the pre-test simulation model except that the infiltration 
test model was separated into four material layers instead of 
three; in addition to a fine–medium sand layer, the infiltra-
tion model included a coarse sand with gravel layer represented 
by core sample 5S0202 (Fig. 9). The model geometry extended 
from the land surface (z = 0 cm) to z = −300 cm, with mate-
rial contact depths determined from GPR data and core samples 
(Fig. 2 and 3). Both M1 and M4 represent coarse, poorly sorted, 
mixed sand/gravel/cobble, M2 represents medium–coarse sand 
with gravel (e.g., core section 5S0202), and M3 represents a uni-
form medium–fine sand (core section 5S0203). The model was 
discretized with elements ranging in thickness from 0.54 to 
5.4 cm and with finer discretization around M3. Initial model 
time (t0) was 1 Aug. 2011, 0000 h, and the model was run for 
24 h, which was an adequate time to reach steady state. Time step 

Fig. 8. Observed tension y(t) and moisture q(t) data from the begin-
ning of the experiment to 10 d after. Moisture data presented are from 
measurement depths nearest to advanced tensiometer (AT) depths in 
neutron site NX5B. Shaded region denotes modeling focus time.
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discretization is internal to HYDRUS-1D software and is con-
tinuously adjusted to achieve convergence (Šimůnek et al., 2005). 
Final mass balance errors were, on average, <3% for all model runs.

The initial conditions of the model were set, using the observed 
water table depth as y = 0 cm at z = −176 cm and measurements 
from the tensiometers immediately before the experiment to cal-
culate a y(z) relationship from the water table to the land surface. 
Observed y increased (decreasing negative pressure) above the 
water table to the depth of AT8 (−55 cm), then decreased slightly 
between AT8 and AT9. Below the water table, y(z) was set to a 
1:1 function, with increasing positive pressure equal to hydrostatic 
pressure. Initial q(z) values were set automatically based on the 
initial VGM parameters for the four different materials and the 
initial tension profile. Observation nodes were placed at depths 
corresponding to AT9, AT8, AT6, and AT5, with an additional 
observation node placed within Material M3 to track q in that 
material. Two nodes used for AT9 and AT5 where used to track 
q in M1 and M4.

The upper model boundary was set as a variable flux boundary 
with P = 0.84 cm h−1 (mean of Buckets 2 and 3) for the time 
of rain application (from 11.6 h [model time] to 24 h) and P 
= 0 cm h−1 otherwise. The lower boundary was set as a head-
dependent flux boundary, with a critical head value of 124 cm 
(the height of the water table above the base of the model). This 
condition maintains a constant water table depth and represents 
water being dispersed laterally on reaching the saturated zone (i.e., 
no recognizable mounding).

 6Metropolis–Hastings 
Optimization
Optimization of the VGM parameters was achieved using five inde-
pendent Metropolis-Hastings (MH) sampling algorithms, with 
five separate initial parameter sets, each run to 106 samples. The 
MH algorithm was similar to the method described by Cardiff et 
al. (2011) (below we provide a brief description of the process but 
refer the reader to Cardiff et al. [2011] for further details). The MH 
algorithm is a Markov chain Monte Carlo (MCMC) type method 
that seeks to generate a set of samples (the Markov chain) that is rep-
resentative of the model parameters’ posterior probability density. 
The MCMC methods are advantageous for modeling in the vadose 
zone because models of vadose zone behavior (i.e., Richards’ equa-
tion and VGM relationships) are strongly nonlinear and parameters 
are often highly correlated, which can complicate gradient-based 
optimization methods (Vrugt et al., 2003b; Vrugt and Bouten, 
2002). The MH algorithm incorporates a downward-stepping func-
tion that takes a step from an initial position in a random direction 
(guided by parameter covariance) and always accepts parameter sets 
that produce a higher likelihood (better fits to the data) but also 
accepts parameter sets of lower likelihood with a certain probability 
(i.e., occasionally accepts parameters that produce a worse fit to the 
data). The former ensures that “peaks” of the parameters’ posterior 
probability are discovered, while the latter allows the algorithm to 
explore the full parameter space and rigorously estimate param-
eter uncertainty. In the case of symmetric jump distributions (this 
study), the MH algorithm reduces to the Metropolis algorithm but 
we maintain the use of the MH abbreviation for the purpose of 
consistency with previous uses of this algorithm (e.g., Cardiff et al., 
2011). The algorithm used in this study is similar to the one used by 
Cardiff et al. (2011) for estimating saturated hydraulic parameters 
of the BHRS aquifer, and minor adjustments were made to the 
code to incorporate the needs of the current model (e.g., check for 
bounds, check forward model nonconvergence, etc.). We used the 
MH algorithm rather than recently developed shuffling algorithms 
(Vrugt et al., 2003a) because, despite the advancements made by 
these methods, the MH algorithm is a widely accepted method 
that is statistically sound, easy to implement, readily available, and 
can easily be run on multiple computers without the use of parallel 
computing strategies.

The MH algorithm explores the parameter likelihood, or equiva-
lently, the negative log likelihood (NLL) function

( )T 1
err d err

1
NLL

2
-= d C d  [5]

where derr is a vector of the error between the observed and cal-
culated data [for both y(t) and q(t)] and Cd is the data covariance 
matrix, a diagonal matrix with elements equal to the estimated 
error, or variance (s2), of the data. For tension data, the observed 
sy was only 2 cm, but this incorporates measurement error only. 
Given the additional uncertainty in AT depths and material 

Fig. 9. (A) HYDRUS-1D model setup showing distribution of materi-
als M1 to M4, grid discretization, and locations of tensiometer (AT) 
and moisture measurement nodes; (B) initial model tension (y) and 
moisture (q) profiles and initial observed y data (circles) prior to test.
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depths, as well as AT offsets mentioned above, sy for Cd was 
increased to 8 cm to incorporate all errors. For q measurements, 
the observed sq was 0.03 based on instrument precision (Johnson 
et al., 2013b), but we used a value of twice this amount in Cd to 
account for the influence of uncertainty in measurement depth 
and sampling volume on the neutron moisture data. The derr vector 
included ?100 data points (300 min) for each of the four ATs in 
TX5BS, with the data centered on the times when the wetting 
front passed each sensor as well as qdry and qwet for each of three 
materials: M1, M3, and M4 (observation nodes AT9, M3q, and 
AT5, respectively, in Fig. 9). Selection of y(t) data in this manner 
eliminated large amounts of redundant and nontransient data in 
the optimization. The choice of qdry and qwet was described above.

The VGM parameters q s, a , n, and Ks were optimized for each 
of the four materials. The value of qr was fixed for each of the 
material layers based on the measured moisture content before 
the test (0.03–0.05 for all materials) because qr has been shown 
to have low identifiability in similar modeling experiments 
(Scharnagl et al., 2011; Inoue et al., 1998; Šimůnek et al., 1998). 
The starting point (initial parameter set) for the MH sampling 
was obtained from the results of a direct search (DS) 
optimization using the MATLAB fminsearch func-
tion. Direct search methods were suggested by Liu et 
al. (2010) to be done before MH methods to provide 
a better starting position. Initial values for the DS 
optimization were obtained from the winter 2010 
rain modeling for M1 and M4 and the results of the 
laboratory core experiment for M3. The M2 initial 
a and n values for the DS method were prescribed to 
that of M3 (similar relatively fine material), and q s 
and Ks were set to values typical of BHRS sand layers 
(Barrash and Clemo, 2002; Barrash et al., 2006). The 
DS optimization reduced the NLL from an initial 
value of 465 to 223. While the DS method did not 
provide very good fits to the observed y(t) and q data, 
the results did provide a better initial state for the 
MH sampling.

The robustness of MH methods comes from the use of 
a large number of iterations to explore the parameter 
space, which makes MH algorithms computationally 
intense and time consuming. The larger the number 
of iterations (e.g., t ® ¥), the more likely the algo-
rithm is to find the optimal parameter set and the 
better it will predict parameter variances (s2) and 
joint probability density functions. Liu et al. (2010) 
and others discussed how the results from a single 
MH chain are often insufficient in identifying the 
optimal parameters and estimating the variance and 
suggested that multiple chains, starting from differ-
ent initial parameter sets, are better at searching the 
entire parameter space and achieving convergence. 

The first MH chain (MH1) was started with the initial param-
eter set taken from the results of the DS optimization mentioned 
above. For the remaining chains (MH2–MH5), the initial sets 
were chosen by picking four parameter sets from within uniform 
distributions, within reasonable bounds, such that the calculated 
initial NLL of the chosen set (Table 2) was <1.5 times the NLL 
of the DS results.

The size of the steps taken between successive samples in the MH 
algorithm, or search radius, is determined by the parameter cova-
riance matrix (Cm), which is a measure of the local s2 of each 
parameter and the covariance between parameters (Tarantola, 
2005). The Cm matrix is then multiplied by a standard normal 
distribution and the resulting vector is added to the current param-
eter set to produce the next set. Parameters that have larger s2 will 
allow the MH sampler to take larger steps in that direction, which 
will more quickly explore the parameter space of less resolved 
parameters. The Cm matrix was estimated from

( ) 1T
m d

-
=C J C J  [6]

Table 2. Initial volumetric saturated soil moisture (qs), saturated hydraulic conductivity 
(Ks) and shape parameters a and n used in all five Metropolis–Hastings (MH) sampling 
runs and lower and upper bounds.

Material Run qs a n Ks

cm−1 cm s−1

M1
(sand and gravel)

MH1 0.31 0.22 2.46 0.239

MH2 0.23 0.32 2.57 0.064

MH3 0.20 0.24 3.54 0.018

MH4 0.34 0.27 1.66 0.312

MH5 0.23 0.16 1.79 0.108

bounds 0.15–0.35 0.04–0.5 1.0–4.0 0.002– 0.6

M2
(coarse sand 

and gravel)

MH1 0.15 0.22 3.29 0.055

MH2 0.15 0.28 2.49 0.250

MH3 0.14 0.46 1.55 0.058

MH4 0.14 0.28 1.51 0.493

MH5 0.12 0.40 1.87 0.240

bounds 0.10–0.40 0.04–0.5 1.0–4.0 0.002–0.6

M3
(uniform fine–

medium sand)

MH1 0.33 0.30 2.96 0.0045

MH2 0.37 0.12 1.38 0.044

MH3 0.44 0.16 3.96 0.0086

MH4 0.48 0.27 1.50 0.067

MH5 0.35 0.15 1.66 0.0033

Bounds 0.20–0.50 0.04–0.5 1.0–4.0 0.0003–0.6

M4
(sand and gravel)

MH1 0.27 0.22 1.72 0.150

MH2 0.19 0.25 3.24 0.089

MH3 0.20 0.13 3.09 0.294

MH4 0.30 0.26 3.51 0.240

MH5 0.35 0.13 3.55 0.246

bounds 0.15–0.35 0.04–0.5 1.0–4.0 0.002–0.6
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where J is the numerical finite-difference Jacobian matrix evaluated 
at the current parameter set and Cd is the data covariance matrix as 
in Eq. [5]. In the five separate MH chains, Cm was updated every 
105 iterations using the latest parameter set to ensure a more effi-
cient search of the parameter space as the MH algorithm evolved. 
From 5 ´ 105 through 1 ´ 106 samples, the Cm matrix did not 
change considerably.

Prior information can be incorporated into the MH algorithm 
by several methods (Liu et al., 2010), but given the nature of the 
infiltration experiment and associated information, we chose to 
enforce bounds to all parameters (Table 2) based on what has been 
observed at the BHRS for saturated parameters qs and Ks or what 
is likely for coarse materials for unsaturated parameters a and n. 
Any parameter set that had >0 parameters outside these bounds 
returned an NLL well above the values expected from in-range 
parameters. The average number of out-of-bound samples for the 
five separate chains was between 45 and 65%.

 6Potential Scale 
Reduction Factor
A scale reduction (SR) factor is used as an unbiased assessment of 
whether multiple MH chains have converged on a single distribu-
tion (Gelman and Rubin, 1992):

1 1
SR

g q B
g q W
- +

= +  [7]

where g is the number of samples 
used, q is the number of indepen-
dent chains, W is the mean of all 
s values from each independent 
chain, and B is the variance of all m 
values from each individual chain. 
The SR should reduce with evolu-
tion of the chains as each chain 
samples through the parameter 
space and the statistical aspects of 
individual chains become similar to 
the aspects of all chains combined 
(Liu et al., 2010). If multiple chains 
converge to the same parameter 
space with similar statistical prop-
erties, SR will approach 1 and the 
chains and full model are said to 
have converged, but, because this 
is unlikely with uncertainty in the 
data, Gelman and Rubin (1992) 
suggested that a value of 1.2 is suf-
ficient to declare convergence. We 
calculated SR with all five MH 

chains beginning at step 5 ´ 105 and continuing to step 1 ´ 106 
and discuss the results below.

 6Metropolis–Hastings 
Results and 
Parameter Distributions
Probability distributions for each parameter from each of the five 
MH chains are shown in Fig. 10 along with the distributions from 
the set of all five chains combined (MHall). Parameter mode (Mo) 
and standard deviation (s) values from MHall are presented in 
Table 3 along with the calculated final SR (after 1 ´ 106 samples). 
These calculations and distributions disregard the first 5 ´ 105 
samples as a “burn-in” period. The final SR for 11 of the 16 param-
eters was <1.2, implying agreement between chains for several 
individual parameters but not convergence of the full model. The 
SR values tracked through the last few thousand samples showed 
little signs of reduction, and mode (Mo) values for those param-
eters with SR > 1.2 also showed little to no change. We infer from 
the invariability of the SR and Mo values for specific parameters 
that full model convergence could not be obtained within a reason-
able number of steps and this perhaps expresses the limitations of 
the current model (discussed below).

Fig. 10. Cumulative distributions of saturated moisture content (qs), curve shape parameters a and n, and 
saturated hydraulic conductivity (Ks)  from all five independent Metropolis–Hastings (MH) chains and 
all chains combined (black lines) for materials M1 to M4. White circles are mean values from combined 
chains.
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Initial NLL values from the five independent chains were: 223, 
256, 232, 232, and 279; after the first 3 ´ 105 samples, however, 
NLL was reduced to <45 for all chains and remained primarily 
between 15 and 35 for the remaining steps (Fig. 11). The consistent 
range of NLL values within each chain and similar values between 
chains after the burn-in suggest that all MH chains reached an 
optimal minimum NLL region that could not be reduced further.

Important observations about the resolution of the parameters 
and the sensitivity of the experiment and forward model to the 

parameters can be made from the parameter distributions in Fig. 
10 and s values in Table 3. 

1. Several parameters appear to have converged to distributions 
that were near normal with clearly identifiable Mo values (qs,M3, 
nM1, nM3, nM4, Ks,M2, Ks,M4), implying agreement between 
chains and a high resolution of those parameters with clear 
optimal values. 

2. Distributions for qs,M1, Ks,M1, and aM4 show little agreement 
between individual chains (little overlap), leading to wide dis-
tributions (high s) for MHall, which is quantified by SR > 1.5 
for all three parameters and indicates non-uniqueness. 

3. Some distributions (qs,M2, qs,M4, Ks,M3) were strongly affected 
by the bounding values, which implies that optimal values may 
be outside the bounds (i.e., qs < 0.15), which, as described above, 
were based on saturated tests performed in this region of the 
aquifer. As we discuss below, this is probably related to the 
resolution of the parameters and the sensitivity of the model 
to those parameters. 

4. Parameters aM2, aM3, and aM4 each appear to converge to a 
single distribution, but these distributions were nearly uniform 
and are thus uninformative, implying that those parameters 
have little influence over the model and data fit. Similarly, the 
fact that s values are more than four times greater for nM2, 
nM3, and nM4 than nM1 (Table 3) implies that the model is 
most sensitive to nM1.

A more detailed discussion of the potential causes and implications 
of these observations is made below.

 6Parameter Covariance 
and Correlation
It is widely understood that VGM parameters are often highly cor-
related, and cross-correlation, which contributes to non-uniqueness, 

Table 3. Mode (Mo) and variances (s) of volumetric saturated soil mois-
ture (qs), saturated hydraulic conductivity (Ks), and shape parameters a 
and n from the combined distribution of all five Metropolis–Hastings 
chains and scale reduction (SR) after 1 ´ 106 samples.

Material Parameter qs a n Ks

cm−1 cm s−1

M1
(sand and gravel)

Moall 0.349 0.085 2.567 0.133

sall 0.060 0.021 0.285 0.074

SR 1.58 1.55 1.11 1.67

M2
(coarse sand and gravel)

Moall 0.102 0.107 1.016 0.012

sall 0.076 0.132 0.649 0.139

SR 1.03 1.02 1.07 1.03

M3
(uniform fine–

medium sand)

Moall 0.261 0.056 1.468 5 ´ 10−4

sall 0.037 0.136 0.125 0.004

SR 1.44 1.02 1.07 2.12

M4
(sand and gravel)

Moall 0.151 0.381 1.366 0.038

sall 0.017 0.096 0.080 0.034

SR 1.08 1.06 1.10 1.16

Fig. 11. Distributions of negative log likelihood (NLL) for all five Metropolis–Hastings (MH) chains excluding burn-in; the thick black line is the 
distribution from all five chains (MHall). Inset: NLL evolution of the first 5 ´ 105 samples from individual chains including burn-in.
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is ubiquitous in parameter inversion in general. In addition to look-
ing at the one-dimensional distributions of parameters, we also 
looked at marginal (two-dimensional) distributions from MHall 
and calculated correlation coefficients (R2) between parameter 
pairs (Fig. 12). Figure 12 shows marginal distributions from MHall 
only, but the trends in distributions and cross-correlation were sim-
ilar for all individual chains and even subsets of chains (e.g., only 
samples with NLL < 25). The highest R2 values for parameter pairs 
within the same material were found between q s–Ks in M1, M3, 
and M4 (R2 = 0.97, 0.91, and 0.73, respectively), a–n in M1 and 
M3 (R2 = 0.74 and 0.69, respectively), a–Ks in M1 (R2 = 0.83), 
qs–n in M4 (R2 = 0.62), and n–Ks in M2 (R2 = 0.80). For all other 
pairs, R2 values did not exceed 0.6. We show more explicitly below 
the effects of parameter correlation on the physical aspects of the 
VGM relationships and data fit.

 6Parameter Relationship to 
Soil Characteristic Curves
The Mo values presented in Table 3 represent only the most likely 
set of parameters given the data, the forward model, and the 
current sampling algorithm. Low NLL values despite wide dis-
tributions and high R2 values between parameters imply that, for 
many parameters, there is a range of values that will fit the data 

equally well. What is controlling the distribution and movement 
of moisture within the soil, as depicted by the model, is the shape 
of the VGM q(y) and K(y) functions, and individual parameters 
can be considered curve-fitting parameters to these functions.

To investigate the effects of parameter uncertainty on uncertainty 
in the q(y) and K(y) functions, we randomly chose 2000 param-
eter sets from MHall and plotted 2000 different q(y) and log 
K(y) characteristic curves for each of the four materials (Fig. 13). 
Despite the wide range of individual parameters chosen (s2 values 
of the sets chosen were similar to the s2 values presented in Table 
3), we see that the relationships between parameters, whether two 
or higher dimension, combine to produce q(y) and K(y) functions 
that are representative of realistic VGM functions and, especially 
for M1 and M4, are unique and informative, with well-defined 
shapes that are very near the curve shapes typical of standard 
agricultural soils (the clear exceptions being M2 functions, which 
indicates the model’s insensitivity to that material’s properties). 
Stauffer and Lu (2012) made a similar inference that curve shapes 
are more informative than individual parameters (due to param-
eter cross-correlation) and used this to reduce computation time 
in unsaturated flow modeling.

The successful application of the VGM model and the finding that 
curve shapes and parameter values typical of sand soils can be used 

to describe the in situ f low behav-
ior of this conglomeratic alluvial 
soil implies that more complicated 
models, such as those with correc-
tions to unsaturated soil models (e.g., 
Bouwer and Rice, 1984; Peck and 
Watson, 1979) or separation of the 
relatively fine-grained fraction from 
the coarse fraction (e.g., Tetegan et 
al., 2011; Dann et al., 2009), and the 
associated additional model parame-
ters, are not necessary to characterize 
unsaturated flow in conglomeratic 
alluvial soil, particularly under nat-
ural recharge conditions and where 
saturation values are low.

Figure 13 also emphasizes the 
relationship between parameter pre-
dictability and the saturation range 
of the experiment. Final q values 
from the experiment were only about 
half the estimated q s (50% satura-
tion) in Materials M1 and M4, and 
Fig. 13 shows that more of the 2000 
q(y) and K(y) curves diverge near 
saturation, with the most clear exam-
ple coming from M1. Less agreement 

Fig. 12. Marginal distributions of saturated moisture content (qs), curve shape parameters a and n, and 
saturated hydraulic conductivity (Ks) from sets 5 ´ 105 through 1 ´ 106 of all Metropolis–Hastings 
(MH) chains combined for each material M1 to M4.
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at high saturation implies poor resolution of the parameters that 
influence that portion of the curve: mainly qs and Ks. When not 
constrained by the observed data, qs and Ks represent only the end 
points of the curves and thus will be difficult to resolve without 
outside constraint (e.g., independent estimates), a conclusion also 
reached by Scharnagl et al. (2011). A similar case can be made 
for a, which relates to the bubbling pressure or the y value at 
which q begins to decrease from saturation. If near-saturation is 
not reached, a may also be difficult to resolve, as is evident from 
the distributions shown in Fig. 10. Had the experiment covered 
the full range of saturation, qs and a would become more resolved 
and, given the high correlation between qs and other parameters 
(especially Ks), many other parameters would probably be better 
resolved as well. Fortunately, saturated parameters like q s and 
Ks can be easily and accurately obtained from other methods or 
experiments (e.g., neutron porosity logs, slug tests, pump tests, etc.), 
which can be used to constrain unsaturated models when full satu-
ration is not reached.

The q(y) and K(y) curves shown in Fig. 13 also indicate the 
insensitivity of the model to M2—not only to individual M2 
parameters, but to the shape of the full q(y) and K(y) func-
tions. The wide distribution on the M2 q(y) curves, but still low 
NLL values, shows that the forward model and calculated data 

are insensitive to M2 and that given 
the field experiment (and likely viola-
tion of one-dimensional assumptions 
for M2 especially), the model will 
struggle to resolve M2 parameters in 
its current capacity. This is not surpris-
ing given that q measurements were 
not made within M2 and, according 
to the installation depths of AT8, y 
measurements were made very near 
the top of the material zone (see Fig. 
9). Had the sensor been located lower 
in the material, the observed y(t) data 
would have been more influenced by 
the M2 q(y) and K(y) functions 
because water would have to f low 
through more of that material before 
reaching the sensor. Interestingly, if 
we were to look only at the q(y) and 
K(y) curves produced from chain 
MH2 (m and s of the curves shown in 
Fig. 13), which maintained a higher 
Mo for nM2 and Ks,M2 for much of 
the last 5 ´ 105 runs, the q(y) and 
K(y) curves have much better agree-
ment and have a shape more similar 
to typical soils (i.e., a clearly defined 
curve and bubbling pressure). It is pos-
sible that the higher n and Ks values 

initially predicted by MH2, because of the initial parameter 
set, were due to the sampling algorithm becoming temporarily 
trapped in a local minimum. As MH2 progressed further, it began 
to approach the global minimum approached by the other chains. 
Had we stopped the algorithm too soon or used only the results 
from MH2, we would have predicted higher n and Ks values and 
more informative q(y) and K(y) curves but would have overesti-
mated the dependence of the model to parameters nM2 and Ks,M2 
and underestimated the parameter uncertainty.

In Fig. 13, we show how the range of optimal parameters pre-
dicted by the MH sampling produced wide distributions of some 
parameters but that those parameters still work together to pro-
duce informative q(y) and K(y) relationships across the range of 
saturation achieved by the experiment (a similar concept to that of 
Stauffer and Lu, 2012). To show the model’s ability to reproduce 
the observed y(t) and q(t) data from the experiment, we took a 
similar approach as in Fig. 13 of using a random sample of param-
eter sets from within the final distributions. In Fig. 14, we show fits 
to observed y(t) and q(t) data for 2000 forward model runs using 
randomly chosen parameter sets. Figure 14 further emphasizes that 
uncertainty in input parameters does not necessarily correlate to 
uncertainty in the calculated data or negate the model’s ability 
to capture the observed behavior and shows that uncertainty in 

Fig. 13. Soil moisture q(y) and hydraulic conductivity K(y) curves produced from 2000 randomly 
chosen parameter sets from all five Metropolis–Hastings chains for each material M1 to M4. Darker 
shades indicate where more of the curves overlap; solid red lines represent mean curve values, and 
dashed red lines represent ±2s. Green lines for M2 (sand) curves are from the second chain (MH2) 
parameter sets only.
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parameters, or the lack of full model convergence, does not lead 
to high uncertainty in the predicted data.

 6Summary and Conclusions
Artificial rain was applied to a 5- by 2-m area using standard 
greenhouse misters at an average rate of 0.84 cm h−1 for 19 h 
until vertical q(z) and y(z) profiles reached steady state. A one-
dimensional unsaturated flow model was used to predict y(t) at 
four observation depths and qdry and qwet for three specific layers. 
Five independent MH sampling algorithms with 106 samples each 
were used to identify the distributions of in situ parameters for 
the VGM relationships of four materials in the test site sediment 
sequence. Several types of information were gathered before the 
test for better planning of the experiment and to provide useful 
prior information for model development and initial optimiza-
tion parameters. The model material distribution and initial model 
properties (e.g., stratigraphy, boundary conditions, and initial 
parameter values) were estimated from GPR reflection data, soil 
core samples, and long-term monitoring before the experiment.

Optimal NLL values predicted by the five independent MH 
chains were reached after ?3 ´ 105 samples for all chains and 
remained between 15 and 35 through 1.5 ´ 106 samples. Final 

parameter distributions from the last 
5 ´ 105 samples of the five separate MH 
chains produced similar mode values, 
and only 11 of the 16 parameter distri-
butions produced final SR values <1.2, 
which implies a lack of convergence of 
the full model. We attribute model non-
convergence to the high variability of the 
NLL functions for certain parameters 
(e.g., nonlinearity, several local minima, 
etc.) and high correlation between 
parameters. Furthermore, we feel that 
this lack of convergence is an unavoid-
able aspect of the data set and expresses 
the difficulty with in situ methods and 
inherent uncertainty in the VGM func-
tions used under specific conditions [i.e., 
heterogeneity and the use of only y(t) 
data to constrain parameters]. Marginal 
distributions and R2 values showed that 
some material parameters were very 
highly correlated (R2 > 0.9), specifi-
cally, qs–Ks and a–n. Despite the range 
of parameter values within individual 
and combined chains and the appar-
ent lack of full model convergence, the 
q(y) and K(y) curves predicted by 2000 
randomly chosen parameter sets were 
generally in agreement within the range 
of the observed y, q, and K produced by 

the experiment and diverged as the curves approached saturation, 
which was not reached during the experiment. Similarly, y(t) and 
q(t) predicted from a random subset of all sets were in very good 
agreement with each other and with the observed data despite the 
wide distributions of some parameters, indicating complex param-
eter correlation and non-uniqueness.

Our results highlight the strong non-uniqueness of the unsatu-
rated hydraulic properties of very coarse material specifically, and 
unsaturated materials in general, and the difficulty involved in 
obtaining a single ideal set of parameter values for a given material 
under natural field conditions, especially when one-dimensional 
assumptions are violated and optimal data are not collected for all 
materials. Gathering additional information, such as y(t) and q(t) 
in each material layer, covering the full range of saturation during 
the experiment (i.e., by applying precipitation at rates far exceed-
ing natural conditions), or constraining the parameters with prior 
information would lead to tighter, more informative distributions 
of the VGM functions but would probably still be burdened by 
parameter cross-correlation and non-uniqueness.

In conclusion, this study (i) successfully applied a field-based infil-
tration experiment to characterize in situ unsaturated hydraulic 

Fig. 14. Soil tension y(t) and moisture q(t) intensity plots calculated from 2000 parameter sets taken 
from all five Metropolis–Hastings chains (MHall) for the four observed advanced tensiometer (AT) 
and three moisture (M) measurement depths. Darker shades indicate where more of the curves overlap. 
Solid red lines are mean values and dashed red lines are ±2s; white circles are observed data.
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properties for a coarse (sand, gravel, and cobble), alluvial sediment 
sequence, (ii) showed that high infiltration rates (i.e., greater than 
natural precipitation rates for long periods) can be accommodated 
by conglomeratic soil despite relatively low porosities and high 
concentration of large cobbles (d > 20 cm), (iii) highlighted the 
difficulty in developing soil characteristic curves for coarse soil 
types under natural infiltration conditions, given that moisture 
levels may not reach saturation and thus certain parameters like 
qs and Ks will be difficult to resolve, and (iv) suggested that soil 
characteristic functions developed for fine-grained agricultural 
soils, such as VGM relationships, can be successfully applied to 
predict in situ unsaturated flow behavior of cobble-dominated 
alluvial soils.
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