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ABSTRACT 

Our ability to model and predict unsaturated hydrologic processes in coarse, 

conglomeratic material is limited by the unconsolidated nature of these materials, the 

large grain sizes present (often gravel to cobble size), and the scale of heterogeneity that 

is typical of coarse, conglomeratic sediment (both within single layers at the grain-size 

scale and between interbedded lenses). Additionally, the nature of flow and specifically 

the effects that large cobbles have on infiltration and soil moisture (θ [-]) – tension (ψ 

[L]) – hydraulic conductivity (K [L t
-1

]) relationships are not well understood for 

conglomeratic sediment. In this dissertation I address the lack of knowledge of 

unsaturated flow in coarse, conglomeratic sediment by determining if functional θ-ψ-K 

relationships, specifically van Genuchten-Mualem (VGM) relationships, developed to 

predict unsaturated flow in relatively fine-grained sediment can be directly applied to 

coarse, conglomeratic sediment. I also provide insight into the effects that cobbles have 

on flow and moisture content under infiltration conditions.  

In the summer of 2011 a field-scale infiltration test was conducted at the Boise 

Hydrogeophysical Research Site, an alluvial gravel bar composed of coarse, 

conglomeratic sediment with interbedded fine-coarse sand lenses and minimal silt and 

clay. The purposes of this test were to investigate infiltration processes in conglomeratic 

sediment, determine if functional ψ-θ-K relationships could be applied to infiltration in 

coarse, conglomeratic sediment and, if so, estimate parameter values for the VGM 
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functions. Vertically and laterally distributed ψ(t) and θ(t) measurements were made 

within the infiltration volume, and geophysical data and core samples were used to 

determine material structure and distribution for model development. 

A four-material, 1D layered model was used with a Metropolis-Hastings search to 

fit partial ψ(t) and θ(t) data and determine if VGM relationships were appropriate for 

unsaturated flow in coarse, conglomeratic sediment. The 1D model accurately fit the 

observed data for most of the system, implying that VGM relationships were applicable, 

and predicted low uncertainty in θ(ψ) and K(ψ) curves for three of the four different 

materials but high uncertainty was observed in individual parameter values (σ/μ > 50 %). 

High uncertainty was attributed to the inability of the model to incorporate lateral 

heterogeneity and the associated exclusion of the full θ(t) data. A four-material, 2D 

model was then constructed to incorporate variations in material thickness and to fit all 

ψ(t) and θ(t) data. Direct-search optimization showed that fitting θ(t) and ψ(t) data 

simultaneously was not possible due to additional, lateral heterogeneity within one of the 

material layers (which was evident from K(ψ) curves) and a five-material, 2D model was 

constructed.  Direct-search optimization was used to accurately fit the full θ(t) and ψ(t) 

data sets and Latin-hypercube Sampling was used to estimate parameter uncertainty. 

Final results showed much less uncertainty in parameter values (σ/μ < 15 %) with a 

reduction of individual parameter uncertainty up to 36% compared to the 1D model. 

A method was also developed to use reflection travel-time from time-lapse 

ground-penetrating radar (GPR) profiles to estimate changes in θ in the vadose zone. The 

method was applied to the infiltration test data but failed to accurately reproduce the 

observed travel-time data, which was attributed to uncertainty in picking GPR reflections. 
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Results from both the 1D and 2D models show that unsaturated flow relationships 

developed for agricultural soils (e.g., the VGM models) can be used to predict flow and 

moisture distribution in coarse, conglomeratic sediment. This implies that cobbles do not 

have a significant effect at low-saturation flow rates, at least in sediment where the inter-

cobble material is sand with minimal silt or clay. In this regard, the sustained high 

infiltration rate of the field experiment was conducted through the full 1.7 m thickness of 

the vadose zone at relatively low moisture contents (θ < 10 % in conglomeratic sediment 

layers). This indicates limited obstruction by cobbles and a very high capacity for 

infiltration in these types of materials under natural conditions. 
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CHAPTER 1: INTRODUCTION 

Uncertainty in predicting unsaturated flow in coarse, conglomeratic sediment 

stems from a lack of understanding of the fundamental relationships between physical 

states and properties that control flow, specifically: soil moisture (θ), soil tension (ψ), and 

hydraulic conductivity (K). Functional relationships between θ, ψ, and K have been 

developed and extensively applied to relatively fine-grained sediment (particle diameter 

(d) < 2 mm) but have seldom been applied to coarse (d > 2 mm), conglomeratic sediment 

and have yet to be applied to in situ, coarse, conglomeratic sediment with natural, 

heterogeneous structure. This dissertation focuses on 1) determining if θ-ψ-K 

relationships developed for fine-grained sediment can be used to predict unsaturated flow 

in coarse, conglomeratic sediment in situ and 2) estimating parameters representative of 

these sediments. In this introductory chapter, I provide a background of unsaturated flow 

in the vadose zone and briefly address the current level of knowledge of unsaturated flow 

in conglomeratic sediment. I also provide a preview of the following chapters. 

1.1 The Vadose Zone 

The vadose zone describes the geologic media between the land surface and the 

water table (Selker et al. 1999). Its thickness depends on the depth of the water table and 

can range from being non-existent, where the water table is at the land surface, to 

hundreds of meters in areas that receive little rainfall (e.g., arid or semi-arid regions) or 

have high relief (e.g., mountainous terrain). The vadose zone can be composed of 
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consolidated rock, sediment, or soil, and the soil itself can possess varying levels of soil 

development (pedogenesis). The vadose zone is distinct from the saturated zone (i.e., 

zone beneath the water table) by having its pore space only partially saturated for most of 

the time. The partial saturation leads to one of the main state variables of the vadose 

zone: moisture content (θ [-]). Moisture content can be as low as zero but under natural 

conditions is typically limited to residual moisture content (θR) which accounts for water 

bonded to soil grains and trapped in isolated pores. When the soil is completely saturated 

it is referred to as saturated moisture content (θS), which is approximately equal to the 

sediment porosity (ɸ). 

The vadose zone is the most extensive link between the atmosphere and the 

saturated zone. It is an essential part of both the natural hydrologic cycle (e.g., infiltration 

from precipitation) as well as the human-altered hydrologic cycle (e.g., irrigation and 

artificial recharge). Precipitation or irrigation on the land surface can take several paths; it 

can be evaporated back into the atmosphere or move as overland flow, but the majority 

infiltrates into the vadose zone (Dingman 2002). Once in the vadose zone, soil water can 

percolate through the full thickness of the vadose zone and become incorporated into the 

saturated zone (groundwater), be extracted through plant roots, or move laterally. Any 

surface contaminants that are dissolved in the water when it infiltrates (e.g., agricultural 

fertilizers, pesticides, etc.) have the potential to reach the groundwater and contaminate 

drinking water aquifers, or could seriously disrupt the soil ecosystem. While within the 

vadose zone, contaminants have the potential to become adsorbed onto soil grains, 

thereby becoming relatively immobile, or can be decomposed by biological activity and 

reduced to safe concentrations. Knowledge of the vadose zone, and particularly flow 
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through it, is thus essential to the overall health of the soil as well as protecting 

groundwater resources. 

The vadose zone also plays an essential part in the routing of precipitation to 

streams and rivers. In montane environments, such as the western United States, winter 

precipitation is stored as snowpack at higher elevations. In the spring when the snowpack 

melts, sometimes rapidly, much of the water flows through the vadose zone or saturated 

zone (via the vadose zone) before recharging streams (Smith et al. 2011). The flow paths 

though the vadose zone help dampen spring flooding in montane streams and provide a 

source of water for vegetation. Vadose zone properties control the rate of infiltration and 

soil water flow and are essential components of flood forecasting models (McNamara et 

al. 2005). A better understanding of unsaturated flow in materials that make up the 

vadose zone in montane soils (usually unconsolidated weathered bedrock or coarse soil) 

is essential in streamflow prediction (e.g., Kelleners et al. 2010). 

1.2 Unsaturated Flow in Coarse Conglomeratic Sediment 

With a growing global population comes the need for better utilization of 

previously undeveloped or under-developed landscapes to better meet the needs of 

humans. This includes converting once arid soil to fertile agricultural land and 

developing areas that have previously been less desirable locations, such as floodplains 

and riparian areas. Many of these areas have thin soil layers and are composed of coarse 

(d > 2 mm), sometimes conglomeratic soil/sediment with a significant fraction of gravel 

(2 mm < d < 63 mm) or cobble (d > 63 mm) sized particles. Riparian areas and 

floodplains generally have a very thin vadose zone and the proximity to rivers or other 

surface water sources (e.g., marshes and oxbow lakes) means that a quantitative 
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understanding of infiltration and θ distribution in these landscapes, and in coarse, 

conglomeratic sediment in general, is important for maintaining healthy streams and 

riparian areas as well as for supporting the people who inhabit those areas. 

There has been a substantial amount of work in coarse, conglomeratic sediment 

that has focused on how the presence of cobbles affects conditions such as flow (Cousins 

et al. 2003; Sauer and Logsdon 2002; Milczarek et al. 2006) and overall moisture content 

or porosity (Zhang et al. 2011; Bouwer and Rice 1984), but none of this work has been 

on in situ sediment at the field scale. The accepted conceptual understanding is that non-

porous cobbles inhibit flow by lengthening flow paths around these objects (Bouwer and 

Rice 1984; Mehuys et al. 1975) and reduce overall porosity because they are large zero-

porosity zones. In the method developed by Bouwer and Rice (1984), the hydraulic 

conductivity (K) and moisture retention curves θ(ψ) for coarse conglomeratic sediment 

were determined by estimating values for the fine-grained fraction and correcting for the 

volume of the coarse-grained fraction. This method implies that coarse material inhibits 

flow in a linear (or quasi-linear) fashion and that fine-grained material has the dominant 

influence over hydraulic properties in the vadose zone. Other methods were developed on 

the same premise (e.g., Peck and Watson 1979). Milczarek et al. (2006) tested the 

Bouwer and Rice method against laboratory measurements of θ(ψ) and K(ψ) on repacked 

coarse material while varying the fraction of gravel and found that the correction method 

led to large errors. The concept that non-porous cobbles inhibit flow in conglomeratic 

material because of increased tortuosity is conceptually sound, but whether these same 

processes apply to unsaturated flow is somewhat speculative. The Bouwer and Rice 

method essentially assumes that cobbles affect the entire θ(ψ) and K(ψ) functions equally 
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across all moisture levels. At the end of this dissertation I use evidence developed in the 

following chapters to hypothesize that the influence of cobbles is greater at high 

saturation and diminishes with decreasing θ. 

Several different constitutive functions have been derived to express the 

relationships between θ, K, and ψ and predict flow in soil under unsaturated conditions 

(e.g., Brooks and Corey 1964; Gardner 1958; Kosugi 1994; Mualem 1976; van 

Genuchten 1980). For the work presented in the following chapters, I use exclusively the 

van Genuchten-Mualem relationships (Mualem 1976; van Genuchten 1980 – see section 

3.2.3 for a full description) because they are some of the more widely used functions, are 

continuous (e.g., dθ/dψ and dK/dψ exist everywhere), and perform better in the modeling 

used in this study than other relationships (e.g., Brooks and Corey 1964). The van 

Genuchten- Mualem (VGM) relationships were derived from laboratory experiments 

performed on fine-grained soil cores and were aimed at describing flow and θ distribution 

in primarily agricultural soils (sandy loam, silty clay, etc.). Over the past few decades 

these constitutive relationships have been applied to nearly every type of soil/sediment 

and numerous studies (too many to list here) have shown that they accurately describe the 

complex θ-ψ-K relationships. Several authors have compiled these studies to produce 

“representative” VGM values for specific soil types (Carsel and Parrish 1998; Rawls et 

al. 1982). These compilation studies are frequently used as references in modeling 

manuals (e.g., in Lapalla et al. 1987 and Simunek et al. 2005) for identifying VGM 

values for specific soil types rather than requiring laboratory tests, and estimating VGM 

parameters, for each individual soil. Such extensive databases do not exist for coarse 

sediment as there have been few published VGM values for coarse sediment. 
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Characterization methods that rely on correction for the coarse fraction (e.g., 

Bouwer and Rice 1984; Peck and Watson 1979) are only possible if representative 

samples of in situ material are available (discussed in the following paragraph). The study 

of unsaturated flow in coarse, conglomeratic material, and characterization in general, is 

difficult for a number of reasons which stem from 1) the often unconsolidated nature of 

such material and 2) the large material grain size. A common method for studying 

soil/sediment is to take a sample and perform tests in a controlled laboratory 

environment. With such tests it is important to maintain the structural integrity of the 

sample (e.g., orientation, compaction, porosity) to ensure that it is an accurate 

representation of the in situ material. In unconsolidated material this is extremely difficult 

because there is little coherence between individual soil grains and samples are at risk of 

crumbling when extracted or transported (Cousin et al. 2003; Mehuys et al. 1975). 

Additionally, it is important that sediment samples are representative of the average 

material distribution. In coarse sediment where the largest grains can be on the order of 

10 cm in diameter, it would require a sample significantly larger than that to provide a 

representative elementary volume (REV). Samples of such size are logistically difficult to 

obtain as well as to use in laboratory tests. A few studies have looked at the direct 

application of the VGM relationships to coarse, conglomeratic sediment (Dann et al. 

2009; Ma et al. 2010; Milczerik et al. 2006) but have focused only on laboratory 

measurements made on reconstructed sediment and not in situ characterization.  

Methods where vadose zone properties are measured in situ are better suited to 

capturing the REV and overcoming issues with consolidation, but still they have their 

difficulties. Soil pits are an often utilized method for measuring in situ properties of 
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sediments but are still burdened by issues of lack of consolidation, including the danger 

of collapse of the pit face. Methods where direct measurements in the soil are made (e.g., 

tensiometers, TDR probes) are further complicated by instrument contact (for good 

hydraulic continuity) and sampling volume (point measurement vs. volume 

measurement). With coarse sediment that contains large cobbles and potentially large 

pore spaces, a point measurement (e.g., tensiometer probe) could be made either within a 

large pore or in contact with a large cobble. Both scenarios would result in an 

unrepresentative value of the average properties in the sediment. Volumetric 

measurements (e.g., neutron moisture probes) taken near several large cobbles will result 

in underestimation of θ but measurements in zones with little cobble fraction will 

overestimate θ. Measurements taken at the REV scale would provide average values but 

would likely be too large to capture high-resolution data important for transient tests 

(e.g., infiltration). The ability to fully capture the heterogeneity at the sand – cobble scale 

is inherent to work in conglomeratic or bimodal material. Despite these limitations, there 

are methods that are well-suited for unconsolidated materials, such as the bore-and-

backfill method described by Hubbell and Sisson (1998). This method is described in 

detail in Chapter 2 and was used in Chapter 3 to obtain accurate ψ(t) measurements in the 

coarse, conglomeratic soil of the study site. 

1.3 Chapter Preview 

In the following dissertation I extend the current level of understanding of 

unsaturated flow and moisture distribution in coarse, conglomeratic sediment and 

indirectly investigate the influence of large cobbles on VGM relationships. I specifically 

focus on answering two main questions: 1) can VGM or similar constitutive relationships 
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that were developed for fine-grained soils be applied to coarse, conglomeratic sediment 

as is (i.e., without correction or separate consideration of the coarse-grained fraction)? 

And 2) if VGM relationships apply, what are representative values for conglomeratic 

sediment and are these values similar to typical fine-grained soil or to values that would 

be obtained from the fine-grained fraction alone? Both questions are answered through 

execution of an infiltration test and modeling of the observed θ(t) and ψ(t) data. 

Furthermore, I use the results to place unsaturated behavior in context with respect to 

cobble influence and unsaturated processes and make suggestions for follow-up work to 

fill the remaining knowledge gap. 

Chapter 2 provides background on the Boise Hydrogeophysical Research Site 

(BHRS), where the infiltration test was conducted. This chapter describes the geology 

and hydrology of the site and establishes it as a natural, well-characterized research site. 

Chapter 2 also contains information on vadose zone instrumentation and calibration. 

Chapter 3 presents the design and results of the infiltration test and the construction and 

results of the 1D modeling. It culminates with estimates of VGM parameter distributions 

and uncertainty and establishes that VGM relationships can be applied to the bulk coarse 

conglomeratic soil without correction. The information contained in Chapter 3 is also 

available in Thoma et al. (in press). Chapter 4 describes the development of the 2D model 

and shows how parameter optimization was used to 1) identify heterogeneity, and 2) 

estimate final parameter values and uncertainty. Chapter 4 results provide improved 

estimates of VGM parameters for BHRS vadose zone material with reduced uncertainty 

from Chapter 3. Chapters 3 and 4 present some of the first published θ(ψ), K(ψ) 

relationships and VGM parameters for in situ, coarse, conglomeratic sediment. Chapter 5 
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addresses the main conclusions of each chapter and where future efforts and 

improvements can be made in understanding and quantifying vadose zone behavior in 

this widespread class of sediments. 
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CHAPTER 2: BHRS ENVIRONMENT, FIELD SITE, AND DATA COLLECTION 

2.1 Introduction 

In this chapter I present a brief introduction to the BHRS to familiarize the reader 

with the study area and the type of data collected there. An overall understanding of the 

BHRS environment is important to the infiltration project discussed in the following 

chapters because it emphasizes that the project was conducted in a well-studied aquifer in 

a natural field environment. Natural field sites may have uncertainty in boundary 

conditions (some of which are mentioned in this chapter) and material distributions, but 

provide a more realistic scenario for scientific testing of natural materials with natural 

structure (e.g., heterogeneity). The information contained in this chapter also helps 

establish the BHRS as a well-characterized research site with well-understood boundary 

conditions and shows that careful planning went into the design of the infiltration test that 

was the focus of this project and is described in Chapter 3. 

This chapter is presented as two main sections with specific information 

contained in sub-sections. Section 2.2 provides an overview of the BHRS and 

summarizes information collected on the river and atmosphere during an extensive 

monitoring campaign from 2010 – 2013; this information is relevant to later chapters. 

Section 2.3 presents vadose zone monitoring methods and provides descriptions of 

installation and calibration of instruments used during the 2010 – 2013 monitoring 

campaign and during the infiltration test presented in Chapter 3. Much of the information 
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contained in Section 2.3 is from technical reports by Aishlin et al. (in prep) and Johnson 

et al. (2013b). All data collected during the 2010 – 2013 monitoring campaign are 

available in the DataBase Management System (DBMS) which can be downloaded at 

http://cgiss.boisestate.edu/bhrs/bhrs-data/. All data and figures taken from technical 

reports are used with permission from all authors. 

2.2 Site Overview 

The BHRS is located 15 km southeast of Boise, Idaho on a 0.036 km
2
 gravel bar 

adjacent to the Boise River (Figure 2-1). The unconfined aquifer has been an important 

site for hydrologic and geophysical characterization of aquifer properties and 

groundwater flow in heterogeneous, coarse, conglomeratic sediment (Barrash et al. 1999; 

Reboulet and Barrash 2003). The BHRS gravel bar is composed of coarse alluvial 

material ranging in size from fine sand to large (d > 20 cm) cobbles and is primarily 

structured into zones of uniform fine-coarse sand lenses with high porosity (ɸ) 

interbedded within coarse, conglomeratic sediment  units (i.e., mixed sand-gravel-cobble) 

with relatively low porosity (Figure 2-2) (Barrash and Clemo 2002). This structure and 

material type is typical of high-energy fluvial deposits (Figure 2-3) and represents a 

variable-energy depositional environment (i.e., variable annual and sub-annual 

discharge). 

http://cgiss.boisestate.edu/bhrs/bhrs-data/
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Figure 2-1: A) Overview of Boise area showing BHRS and nearby dams along the 

Boise River; B) BHRS and hydrologic measurement locations. 
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Figure 2-2: Porosity logs from selected wells at the BHRS show alternating high-

porosity and low-porosity layers. 

 

Figure 2-3: Road-cut along the Boise River near the BHRS showing typical high-

energy alluvial deposit and structure (note standard-size utility van for scale). 
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Since establishment of the BHRS in 1997, numerous experiments and 

investigations have been conducted at the BHRS including pump tests and slug tests 

(Barrash et al. 2006; Cardiff et al. 2011; Barrash and Cardiff 2013; Malama et al. 2011), 

tracer tests (Dafflon et al. 2011; Nelson 2007), seismic, ground-penetrating radar, and 

electrical geophysical tests (Bradford et al. 2009; Clement and Barrash 2006; Slater et 

al. 2011), and most recently hydraulic tomography (Cardiff et al. 2012), river-aquifer 

interactions (Thoma et al. in prep), and aquifer-atmosphere investigations (Johnson et al. 

2013a; Malama and Johnson 2010; Thoma et al. in press). Despite the efforts devoted to 

characterizing the subsurface, specifically the saturated zone, there remains a lack of 

quantitative investigation of interactions between the aquifer and adjacent Boise River 

(discussed below) and the aquifer and atmosphere (i.e., vadose zone). Issues with the 

vadose zone are addressed in this project and river-aquifer interactions are discussed in 

detail in Thoma et al. (in prep). 

In the remainder of this section I highlight the Boise River hydrograph (controls 

water table elevation), address the climate of the BHRS, and show aquifer responses to 

natural precipitation. 

2.2.1. Boise River 

The BHRS is located downstream from a series of large dams that regulate flow 

in the Boise River. The nearest dam, Diversion Dam, is < 1 km upstream from the site 

while two larger dams, Lucky Peak Dam and Arrowrock Dam, are located 5 km and 22 

km upstream, respectively (Figure 2-1). A third large dam, Anderson Ranch Dam, is 

located 87 km upstream from the BHRS but is not on the main Boise River and therefore 

is not described here. Lucky Peak and Arrowrock Dams are used primarily for flood 
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management, water storage for irrigation, and recreation while Diversion Dam is used to 

divert water from the Boise River into the New York Canal. The New York Canal 

provides irrigation throughout the Boise River Valley. Discharge is managed by the 

Bureau of Reclamation (BoR) who control the timing and volume of discharge while 

maintaining a balance between water needs downstream (e.g., agricultural irrigation for 

much of the Treasure Valley) and water supply upstream (in the Boise Mountains and 

Boise River Watershed).  

The water table at the BHRS and the thickness of the vadose zone are directly 

controlled by the river stage, and the annual range of stage can produce > 2 m of change 

in the water table elevation during the course of a year leading to vadose zone thicknesses 

between ~3 m in the winter and < 1 m during the spring. The water table responds rapidly 

to changes in river stage but does not reach equilibrium until several days after a stage 

change (Thoma et al. in prep). In this regard, experiments that require stable water table 

conditions (e.g., infiltration tests) can only be conducted during certain times of the year 

when Boise River discharge is stable (i.e., summer or winter).  

Typical hydrographs for water exiting from Lucky Peak (main control of Boise 

River discharge) show a stable winter period with discharge (Q) = 6 – 15 m
3
 s

-1
 (210 – 

530 ft
3
s

-1
) from October until March or April. This is followed by a high discharge period 

in the spring when water is released in response to spring runoff and Q can reach > 250 

m
3
s

-1
 (9000 ft

3
s

-1
) during high-water years. Finally, during summer months Q = 30 – 60 

m
3
s

-1
 (1000 – 2000 ft

3
s

-1
) and is maintained for irrigation and recreation. Average winter 

and summer flows are comparable through the years but maximum discharge and 

duration of spring flows can vary drastically depending on winter snowpack and timing 
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of spring runoff. Discharge out of Lucky Peak and Arrowrock Dams, and diversions into 

the New York Canal at Diversion Dam, are strictly regulated and data are available from 

the BoR website (http://www.usbr.gov/pn/hydromet/). Discharge is not measured out of 

the bottom of Diversion Dam (the dam nearest the BHRS) and thus discharge in the 

Boise River at the BHRS (QBHRS) must be calculated from discharge out of Lucky Peak 

(QLUC) and discharge through New York Canal (QNYC) (Thoma and Barrash 2012). 

Figure 2-4 shows measured QLUC, QNYC, and estimated QBHRS for 2010 and 2011. Higher 

and longer-lasting spring flows in 2011 were the result of greater snowpack and heavy 

spring rains in the Boise Mountains. The infiltration test discussed in Chapter 3 was 

conducted in August of 2011 during the stable summer discharge period. 

 

Figure 2-4: Reported Lucky Peak (QLUC) and New York Canal (QNYC) discharge, 

and calculated discharge at the BHRS (QBHRS) for 2010 – 2011. 

2.2.2 Atmospheric Data 

From 2010 – 2013 an atmospheric pressure/temperature logger was recording data 

at the BHRS. The purpose of this logger was to adjust submerged pressure/temperature 

loggers for changes in atmospheric pressure but it also provided a record of on-site air 

http://www.usbr.gov/pn/hydromet/
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temperature. The BHRS and the surrounding area are classified as a semi-arid climate. 

Average annual temperature in the Boise area is ~11 °C with an annual range in mean 

daily temperature of approximately ±16 °C; the area receives ~28 cm of precipitation 

annually, most of which falls as rain in the winter months (Thoma et al. 2011). Air 

temperatures that are measured at the BHRS with the atmospheric logger are similar to 

those measured elsewhere in the Boise area (Figure 2-5).  

Additional weather data that are pertinent to aquifer-atmosphere and 

evapotranspiration (ET) studies (e.g., precipitation, solar radiation, wind speed) are not 

available at the BHRS but are collected at an Agrimet weather station maintained by the 

Bureau of Reclamation located within the city of Boise ~9 km from the BHRS. 

Precipitation measurements or data that are used to estimate ET (e.g., solar radiation) are 

of interest to BHRS studies, and are often taken from the Agrimet site and applied to the 

BHRS (Johnson 2011) with the assumption that the climate is not significantly different. 

Differences in mean daily air temperature (Tair) measured at the BHRS and at the 

Agrimet site are < 2 °C on average but the BHRS experiences slightly higher maximum 

daily temperatures (Tmax) (Figure 2-5). Despite these small differences, these data imply 

considerable consistency between weather at the BHRS and the Agrimet weather site. 

Measurements of solar radiation made at the BHRS have also been consistent with the 

Agrimet site (Johnson 2011). The similarities between the BHRS and the Agrimet 

weather station are important to show because precipitation data used in Section 2.2.3 

and in Chapter 3 are taken from the Agrimet site and not directly measured at the BHRS.  
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Figure 2-5: A) Mean daily Tair measured at BHRS and at Boise Agrimet site (right 

axis) and distribution of mean temperature difference (left axis); B) distribution of 

maximum (Tmax) and minimum (Tmin) daily temperature difference. 

2.2.3 Well Head Response to Precipitation 

Well head data have been measured nearly continuously from 2010 – 2013 in 

several wells and piezometers across the BHRS with the purpose of observing rapid and 

seasonal changes in the water table elevation caused by changes in river stage (Thoma et 

al. in prep) or due to ET (Johnson et al. 2013a). These data occasionally also show rises 

in the water table following high-intensity winter storms. During several rain events in 

the winter of 2011 – 2012, there was a 2 – 5 cm rise in water level in nearly all wells and 

piezometers across the site within a few days after the rain (Figure 2-6). These responses 

are observed frequently between autumn and spring when heaviest rains fall at the BHRS 

and ET is at a minimum, and are classic examples of the piston-flow conceptual model of 

infiltration. When infiltration is applied to the entire surface, it can only move 

downwards until it reaches the water table. Once at the water table, the low water table 
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gradients at the site and the full areal distribution of additional water lead to the observed, 

temporary rise of the water table. The magnitudes of these responses vary with 

precipitation rate and duration, as expected, but also with distance from the well to the 

river; wells/piezometers close to the river experience higher gradients towards the river 

during precipitation-forced water table rise and thus mounding due to precipitation is 

more quickly equalized in well/piezometers closer to the river (e.g., piezometers P5) than 

farther away (e.g., piezometer P2).  

 

Figure 2-6: Observed water table response to precipitation (first two characters in 

legend values identify well location (P2 and P5 are piezometers, B2 and X5 are 

wells); second two identify depth of sensor in ft bmp).  

The water table response to natural precipitation highlights the high conductivity 

nature of the BHRS vadose zone material, which is discussed in more detail in Chapters 3 

and 4, and was used to help determine an appropriate precipitation rate for the infiltration 

test. Additionally, swelling of the aquifer in response to precipitation can cause additional 

uncertainty in aquifer tests at the BHRS since the water table may not fully recover prior 
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to responding to precipitation. If the response is not uniform across the site, it can 

produce uncertainty in the initial conditions of an experiment conducted shortly after rain 

storms (see Chapter 3). 

2.3 Vadose Zone Instrumentation 

In this section I present information on recent vadose zone installations and 

measurements, specifically tensiometer nests and neutron moisture probe access tubes. It 

also provides information on instrument calibration and uncertainty. Both types of data 

were used extensively during the infiltration test described in Chapter 3 and the modeling 

in Chapters 3 and 4. 

2.3.1 Tensiometers 

In the spring of 2010 and 2011, three nested tensiometer sets were installed at the 

BHRS near wells X1 and X5 (Figure 2-7). Each tensiometer set includes a shallow and 

deep nest each containing four (in the deep nest) or five (in the shallow nest) individual 

tensiometers vertically distributed between the maximum extent of the vadose zone (~ 3 

m below land surface (bls) during winter) and ~0.3 m bls. Vertical distance between 

individual tensiometers is ~0.15 m. Each individual tensiometer is an Advanced 

Tensiometer (AT; Hubbell and Sisson 1998; Sisson et al. 2002) that records soil pore 

tension (ψ) and soil temperature (Tsoil) at 15 min intervals from the time of installation 

until summer 2013.  
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Figure 2-7: BHRS map of central well field, tensiometer nests, and neutron access 

tube locations. 

2.3.1.1 Installation 

Each tensiometer nest was installed using a bore and back-fill method which 

begins with a 25 cm inside diameter (ID) steel casing being driven into the vadose zone 

incrementally to the desired depth. The formation material is augured from the interior of 

the casing leaving a hollow space with the surrounding formation held back by the 

casing. The empty borehole is then filled with alternating layers of a fine sand/silt 

mixture and gravel. The sand/silt mixture is used at depths where an AT and ceramic cup 

(Figure 2-8) is to be placed, and gravel is used between AT depths. The former provides 

hydrologic continuity between the porous cup and the surrounding formation while the 

latter creates a barrier to unsaturated flow between vertically stratified ATs (Figure 2-9). 

From the time of installation until summer of 2013, AT sensors have been logging both ψ 
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and Tsoil continuously at 15 min intervals. Final AT elevations for each of the tensiometer 

nests and detailed information on the installation and data collection process can be found 

in Aishlin et al. (in prep). 

 

Figure 2-8: Advanced Tensiometer sensor (top) and porous ceramic cup (bottom). 

 

Figure 2-9: Schematic example of vertically distributed tensiometer nest. 

2.3.1.2 Tensiometer Offsets 

After installation of ATs, pressure data (to which individual sensor calibrations 

and pre-installation lab offsets were applied) were compared to actual positive pressure 

the ATs were under (i.e., depth of the center of the porous cup below the water table). 
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This comparison showed significant error between recorded pressure and actual 

hydrostatic pressure in several ATs and it was determined that in situ calibration and new 

offsets were necessary. These in situ AT offsets were determined by: 1) locating an 

extended time period when an individual AT was below the water table (i.e., recording 

positive pressure); 2) calculating AT-measured water table elevation, based on the 

positive pressure reading and elevation of the tensiometer; 3) calculating the actual water 

table elevation based on measurements made in a nearby well; and 4) calculating the 

difference between the AT-measured water table elevation (predicted) and well-measured 

water table elevation (observed). A final value of in situ offset was determined as the 

mean difference in water table elevation for the time period when the sensor was 

submerged. Only 16 of the 27 functioning ATs where submerged for sufficient time to 

allow calculation of in situ offsets. For sensors continuously located above the water 

table, offset could not be calculated with this method. AT offsets determined by this 

method ranged from -39.9 cm to +5.7 cm for all 16 ATs for the period of calibration 

(between 3 and 30 days), and variance (σ
2
) in offset for any individual sensor was < 1.6 

cm. As an example, I show the positive pressure data used to calculate offset for six ATs 

in TX5A and the calculated offsets in Figure 2-10. Full offset data procedure for all ATs 

can be found in Aishlin et al. (in prep).  
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Figure 2-10: A) Submerged positive pressure data sensors from TX5A and X5 

water level for time period used for calculation of in situ offsets, bold lines highlight 

the data used for offset calculation; B) difference between AT water level and X5 

water level for stable water level period. 

Although estimated σ
2
 values for AT offsets were very low for the time periods 

used for calibration, offsets were found to vary significantly over the course of a season 

and the lifetime of the sensors. As an example, I show the results of offset data from 

TX5A-1 (i.e., AT1, which is the deepest sensor located in tensiometer nest TX5A) for the 

time period from installation (April 2010) through December 2011 in Figure 2-11. 

Calculated water table elevation data from TX5A-1 were compared to well head 

measured in X5 from a submerged pressure logger and offset was calculated at each data 

record (15 min). These “instantaneous” offsets were compared to recorded pressure and 

this relationship was further separated into different time periods over which AT offsets 

showed clear trends. In summer and autumn of 2010 when the water table was high there 

was a positive correlation between offset and pressure head while for similar months in 
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2011 the correlation was negative. In the winter months when the water table was low 

and stable, there does not appear to be any correlation but that may be due to the stable 

pressure values during these times. These relationships highlight the uncertainty inherent 

in the AT systems over the longer time periods but also show that offsets are quasi-stable 

over shorter time periods of days to weeks. 

 

Figure 2-11: A) TX5A-1 offset as a function of pressure; colors correspond to time 

frames grouped by state of X5 water table elevation (pane B) (from Aishlin et al. (in 

prep)). 

2.3.1.3 Seasonal Tensiometer Trends 

Despite complications and uncertainty in tensiometer offsets, ATs are sufficient to 

measure vadose zone moisture movement in response to surface fluxes such as 

precipitation (both natural and artificial, see Chapter 3) and ET. This is primarily because 

the uncertainty in offsets is much less than the tension changes brought about by such 

events. In Chapters 3 and 4 I present the responses of ATs from TX5A to natural and 

artificial rain, and in this section I present the seasonal AT response to ET.  
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During the hot, dry summer months experienced at the BHRS, ET rates have been 

estimated at ~8 mm d
-1

 (Malama and Johnson 2010) and the lack of precipitation during 

the summer produces an extreme drying effect in the vadose zone. This drying is 

captured by many of the shallow ATs and an example is shown in Figure 2-12. In late 

June 2011, ATs began to respond to drying of the vadose zone by recording gradually 

lower pore pressure (higher tension) until some ATs reached the sensor limit at -400 cm. 

This response began at the shallowest sensors (TX5A-9, referred to as AT9 in Figure 2-

12) and then was followed by sequentially deeper sensors (AT8, AT7, AT6, etc.). Later 

in autumn when ET diminishes and eventually shuts down and precipitation becomes 

more prevalent, ATs begin to respond to the additional moisture in the vadose zone by 

recording decreasing tension. If conditions are not so extreme during the summer that 

there is excessive drying or damage to the porous cup (which can damage the ATs, e.g., 

AT8 in Figure 2-12), the ATs will respond on their own and recover from summer dry 

conditions. 
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Figure 2-12: Example of sequential drying out and recovery of shallowest ATs in 

TX5A during summer of 2010. 

2.3.2 Neutron Moisture Data 

Volumetric soil moisture (θ = vol. water / total volume) was also measured at the 

BHRS during the 2010 – 2013 monitoring campaign. Moisture measurements were made 

from 2010 to 2011 using a CPN 503DR Hydroprobe (see Evett et al. 2003 or Johnson et 

al. 2013b for details) in six neutron access tubes (locations beginning with “N” in Figure 

2-7) installed across the site. These access tubes consist of a clear plastic tube of 5 cm ID 

(2 in) driven into the full thickness of the vadose zone (Johnson et al. 2013b). The 

recording end of the Hydroprobe is lowered into the neutron access tube and records a 

neutron count at each measurement depth. The neutron count is first divided by a 

standard count (i.e., neutron count without the presence of soil moisture such as measured 

in the air) to determine a count ratio (CR). The CR is then used with a linear calibration 

equation to estimate θ of the material at the depth of the measurement (Johnson et al. 

2013b). Measurements of θ have been recorded at the BHRS in five neutron access tubes 
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at 0.15 cm depth intervals every two weeks from May 2010 – November 2011. Data 

collected using the techniques described here and in Johnson et al. (2013b) were used to 

estimate vadose zone properties from: 1) long-term monitoring of seasonal θ data; 2) 

vertical profiles of θ, which identified stratigraphy within the vadose zone; and 3) 

coincident measurements of θ and ψ during an infiltration experiment (Chapters 3 and 4). 

2.3.2.1 Neutron Probe Calibration 

Calibration of the CPN 503DR Hydroprobe was determined in a controlled setting 

by filling a 55 gallon (0.208 m
3
) plastic drum with two different sediment mixtures 

common to the BHRS: 1) a mixed sand and gravel sediment that was repacked to 

approximately the average bulk porosity (ɸ) of BHRS sediment (ɸ  ≈ 0.23); and 2) 

uniform coarse sand, which makes up the inter-cobble space of mixed BHRS sediment 

layers and is also present as isolated lenses within the vadose zone and aquifer (ɸ ≈ 0.44). 

Repeated measurements of CR were taken at dry conditions (θ = 0) and fully saturated 

conditions (θ = ɸ) for each material separately, and these measurements were used with a 

linear relationship to determine coefficients of slope and offset (Johnson et al. 2013b). 

Repeated measurements taken at the same depth under constant moisture conditions 

showed that measured θ values vary by ±0.03 for what is considered constant θ. This 

value of 0.03 was used throughout the monitoring campaign and later in Chapters 3 and 4 

as standard instrument error of the neutron probe. 

After performing calibration on the mixed sediment and coarse sand, and 

determining optimal values of slope and intercept for each sediment type separately, it 

was decided that due to the mixed nature of in situ material and the uncertainty in 

material type within the vadose zone, an average site calibration value would be more 
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applicable than material-specific calibration values. Average calibration values of slope 

and intercept were determined from fitting a linear relationship to data measured in both 

calibrations simultaneously (i.e., treating mixed sediment and uniform sand data as a 

single data set) (Figure 2-13). Average calibration values were applied to all 

measurements made at the BHRS. Final results for the average calibration are presented 

in Figure 2-13 and values of slope and intercept for individual material calibration can be 

found in Johnson et al. (2013b). 

 

Figure 2-13: Relationship between count ratio (CR) and θ for dry and saturated 

conditions of both calibration sediments used for average site calibration (from 

Johnson et al. 2013b). 

2.3.2.2 Seasonal Trends and Stratigraphy 

Vertically distributed θ profiles taken throughout the year were used to identify 

stratigraphy in the vadose zone of the BHRS. The full θ data of the BHRS field 

measurement campaign can be found in Johnson et al. (2013b) but an example from 
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NX5A is provided in Figure 2-14 to highlight stratigraphy identification and seasonal 

trends in θ data.  

 

Figure 2-14: Calculated NX5A θ profiles from selected dates from May-November 

2010. 

Moisture data from NX5A in show evidence of stratigraphy identified from 

individual θ(z) profiles as well as seasonal trends from repeated profiles. Calculated θ(z) 

profiles recorded in NX5A between May and November 2010 show significantly greater 

θ at depths near 0.4 m for measurements made in the early part of the summer (May – 

July) than later in the fall (Figure 2-14). Greater θ at this depth was interpreted as a 

relatively finer material layer (e.g., coarse sand lens with higher ɸ) which holds more 

moisture than surrounding layers (which are interpreted as mixed sediments of lower ɸ). 

Indeed, a fine-medium sand layer was identified from soil cores taken near NX5A at the 
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same approximate depth and GPR data collected over the area confirms that this unit is 

continuous to NX5A (see Chapters 3 and 4). 

Figure 2-14 also shows the effect of seasonal drying of the vadose zone during hot 

summer months. Measurements taken in May and June show slightly higher θ(z) than 

July and considerably higher θ(z) than August, September, and October, which represent 

minimum moisture conditions at the BHRS. As November approaches, θ(z) values begin 

to increase again with the reduction of ET and increased precipitation. These 

observations corroborate with what is observed in tensiometer data in Section 2.3.1.3 

above. 

2.4 Conclusions 

In this chapter I provided a short introduction to the BHRS to establish it as a 

well-studied, natural research site. Additionally, this chapter provides important 

information on boundary conditions of the BHRS (i.e., Boise River) and background 

information on tension and moisture instrument installation, calibration, and seasonal 

trends in data. A more thorough description of the specific location of the infiltration site 

is presented in Chapter 3 and details of tension and moisture data collection can be found 

in Aishlin et al. (in prep) and Johnson et al. (2013b). 
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CHAPTER 3: ESTIMATION OF IN-SITU UNSATURATED HYDRAULIC 

FUNCTIONS OF A COARSE STONY SEDIMENT SEQUENCE FROM A FIELD-

SCALE INFILTRATION EXPERIMENT, BOISE HYDROGEOPHYSICAL 

RESEARCH SITE  

The work presented in this chapter is the basis of a research journal article 

submitted to Vadose Zone Journal and accepted for publication in November, 2013 with 

the following authors: Michael J. Thoma, Warren Barrash, Michael Cardiff, John H. 

Bradford, and Jodi Mead. 

Thoma, M., W. Barrash, M. Cardiff, J. H. Bradford, and J. Mead. 2014. Estimation of in-

situ unsaturated hydraulic functions of a coarse stony sediment sequence from a 

field-scale infiltration experiment, Boise Hydrogeophysical Research Site. 

Accepted by Vadose Zone Journal.  

3.1 Introduction 

In this chapter, I present the results of a field-scale infiltration experiment in a 

heterogeneous, conglomeratic, alluvial sediment sequence that ranges in composition 

from fine-medium sand to mixed sand and large cobbles (d > 10 cm). Prior information 

from GPR, grain-size distributions from core samples, and long-term tension (ψ) and 

moisture (θ) monitoring were used to build a four-material, 1D layered model. In situ soil 

mositure (θ [-]) and soil tension (ψ [cm]) measurements made during infiltration were 

used to predict parameters for the van Genuchten-Mualem soil characteristic fuctions 

(van Genuchten 1980; Mualem 1976). These data were used with the HYDRUS 1D 

unsaturated flow model (Simunek et al. 2005) combined with a computationally intensive 
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Metropolis-Hastings search algorithm to optimize parameters and estimate parameter 

distributions and correlation. Final parameter distributions for θS, α, n, and KS for the four 

separate materials show high uncertainty in individual parameter values but not in VGM 

relationships for individual materials. 

The main purposes of the infiltration test and modeling were to 1) quantitatively 

characterize unsaturated hydraulic properties of coarse, conglomeratic alluvial soil in situ, 

2) determine whether a soil hydraulic model developed for agricultural soils, the VGM 

model, can be used to predict unsaturated behavior in such soil without explicitly 

accounting for the influence of gravel and cobbles, and 3) provide insight into parameter 

correlation and variance under natural field conditions given limited data. The infiltration 

test results show that under high, sustained infiltration rates, the coarse, conglomeratic 

sediments remain highly conductive, despite relatively low porosity and significant 

cobble fraction. The modeling results of this chapter show that VGM relationships can be 

applied to these sediments directly and can describe unsaturated flow behavior over the 

natural range of saturation. 

3.1.1 Introduction to Coarse, Conglomeratic Sediment 

In many arid and semi-arid regions, high-energy riparian areas, and large outwash 

plains, considerable portions of the surface and subsurface are covered by stony soils or 

coarse, conglomeratic alluvial sediments that contain significant fractions of large clasts 

or rock fragments with grain size diameter (d) > 2 mm (Cousin et al. 2003; Miller and 

Guthrie 1984). These conglomeratic alluvial soils, by which I mean alluvial sediments 

with composition from sand to gravel to large cobbles (d > 10 cm) and with little 

pedogenesis, have previously received little attention concerning unsaturated flow as they 
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are not well-suited for agriculture and are often present in under-developed landscapes 

(e.g., desert, periglacial, and floodplain environments). With recent population increases 

comes sprawl into regions where these alluvial soils dominate, and there has been an 

increasing interest in unsaturated flow properties of these materials. Additionally, these 

types of materials make up a substantial portion of periglacial and permafrost 

environments (Lunt et al. 2004), which are sensitive to climate change processes 

involving exchange of water, gas, and heat through the vadose zone. 

The presence of rock fragments in soil has been linked to significant alterations to 

water flow mechanics and soil heat flux in the vadose zone (Cousin et al. 2003) with 

particular focus given in the fields of contamination and mine waste (Corwin et al. 1999; 

Dann et al. 2009; Milczarek et al. 2006), radioactive waste storage (Oostrom et al. 2009; 

Oostrom et al. 2011; Tokunaga et al. 2003), artificial groundwater recharge (Hendrickx et 

al. 1991), hillslope erosion (Cerda 2001; Sauer and Logsdon 2002), and geotechnical 

engineering (Zhang and Chen 2005). Several studies have also addressed the influence 

that stone fragments have on infiltration and available water content in stony soils. 

Mehuys et al. (1975) published some of the first research on the effects of rock fragments 

on unsaturated hydraulic properties and concluded that their presence strongly affects 

moisture content (θ) and saturated hydraulic conductivity (Ks). Since then, other studies 

looked at the influence of stones but primarily focused on determination of saturated 

parameters (e.g., Ks), or available water content (Cerda 2001; Cousins et al. 2003; 

Hendrickx et al. 1991; Sauer and Logsdon 2002; Tetegan et al. 2011). Peck and Watson 

(1979) and Bouwer and Rice (1984) developed pedotransfer functions for determining 

unsaturated hydraulic properties of stony soils based on hydraulic properties of the fine-
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grained matrix (d < 2 mm) and the proportion of rock fraction (d > 2 mm). Dann et al. 

(2009) showed that parameters identified using the fine-grained material, with a 

correction made for gravel content, can be successfully applied to field-scale studies, but 

they emphasized the need for in situ studies on bulk material.  

Milczerik et al. (2006) and Ma et al. (2010) both focused on estimating 

unsaturated soil parameters (particularly curve shape parameters α and n) of coarse 

materials (sand and gravel) using repacked soil columns while varying the proportion of 

rock fragments, but they could not determine a clear relationship between parameter 

values and rock fraction. Ma et al. (2010) further suggested that field experiments were 

essential to providing insight into parameter estimation in stony soils and other authors 

have also suggested that methods performed on soil samples or simulated soil structure 

are not sufficient to represent field conditions (e.g., Dann et al. 2009; Laloy et al. 2010; 

Ritter et al. 2003; Wohling and Vrugt 2011). Numerous studies have been published on 

obtaining in situ hydraulic properties of agricultural soils but, to our knowledge, only a 

few sets of unsaturated hydraulic properties have been published for coarse stony soils 

(e.g., Dann et al. 2009; Ma et al. 2010; Milczarek et al. 2006), and most have expressed 

the need for validation from in situ studies. Furthermore, few studies have looked at in 

situ properties of such coarse conglomeratic soil as I consider in this study.  

Many of the previous studies involving stony soils were based on either simulated 

soils or experiments performed on reconstructed soil cores or columns. These methods 

have been preferred in unconsolidated soils because of difficulties associated with 

obtaining intact, representative soil samples in coarse alluvial soil. When collecting 

samples, it is important to capture the heterogeneity of a non-uniform soil but, because 
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coarse alluvial soils can range in grain size from fine sand or silt to gravel and cobble, 

representative sample volumes may need to be quite large, which would be logistically 

difficult to obtain and then perform lab tests (Dann et al. 2009; Dunn and Mehuys 1982; 

Zhang et al. 2011). Field methods eliminate sampling bias but are difficult in coarse 

alluvial soils because issues often arise with obtaining proper instrument contact with the 

soil structure, minimizing disturbance to the soil, and ensuring sensors are capturing 

heterogeneity caused by grain size variation (Cousin et al. 2003; Edwards et al. 1984; Ma 

et al. 2010). Also, where these soils are poorly consolidated, excavating an open pit face 

or borehole can be difficult and even hazardous. Despite efforts to characterize 

unsaturated hydraulic properties of coarse alluvial soils, there is still a lack of sufficient 

data to allow one to infer general relationships about hydraulic properties of these soils, 

specifically at field scales (Cousins et al. 2003; Ma et al. 2010), and there have not been 

sufficient data published to allow one to estimate property values from a literature search 

or from pedotransfer functions, in contrast to what is available for typical agircultural 

soils (e.g., Carsel and Parrish 1988; Leij et al. 1996; Rawls et al. 1982).  

3.2 Methods 

3.2.1 Experimental Setting 

The setting for the infiltration experiment was the BHRS located 15 km southeast 

of downtown Boise, Idaho. The site covers 0.036 km
2
 of a gravel bar adjacent to the 

Boise River (Figure 3-1). The upper 18 m of the gravel bar consist of coarse, 

unconsolidated mixed sand /gravel/cobble deposits with interbedded fine-coarse sand 

lenses and underlain by an extensive clay/basalt boundary. There is little to no 
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pedogenesis at the site except in low-lying areas upstream from the main wellfield and 

along the river edge, where the surface becomes inundated during seasonal flooding. In 

these areas, surface sediments are primarily sand, gravel, and cobbles but contain a thin 

surface layer of silt/sand and organic detritus but still no distinct soil horizons. Across the 

site the sediment supports vegetation which includes grasses, shrubs, and deciduous trees; 

hence our classification of it as an alluvial soil. Vadose zone thickness varies with 

topography and seasonally with river stage from ~3 m during winter to between 1.5 – 2 m 

during the summer, when river stage is higher.  

 

Figure 3-1: Areal view of BHRS showing water monitoring wells () and 

infiltration test area; inset shows detailed schematic of infiltration setup showing 

locations of hydrological and geophysical measurements (crosses correspond to rain 

bucket locations). 
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Vadose zone composition is identical to aquifer composition that has been 

extensively studied using numerous hydrologic and geophysical experiments which have 

identified layered stratigraphy within the aquifer and led to a highly characterized 

subsurface in terms of saturated properties and material distributions (Barrash and Clemo 

2002; Barrash and Reboulet 2004; Bradford et al. 2009; Clement et al. 2006; Clement 

and Barrash 2006; Dafflon et al. 2011; Moret et al. 2006; Mwenifumbo et al. 2009; Slater 

et al. 2011). Porosity estimates vary across the site but are generally between 10 and 30% 

in stratigraphic units identified as mixed sand/gravel/cobble, and up to 50% in sand 

lenses (Barrash and Clemo 2002).  A number of techniques have been used at the BHRS 

to estimate KS, and average values per well or stratigraphic unit range from 0.04 cm s
-1

 to 

0.16 cm s
-1

 (Barrash et al. 2006; Barrash and Cardiff 2013; Cardiff et al. 2011, 2012; 

Malama et al. 2011; Straface et al. 2011). More recently, research at the BHRS has been 

extended into aquifer-atmosphere interactions including investigations of 

evapotranspiration effects on water table drawdown (Johnson et al. 2013a; Malama and 

Johnson 2010) and vadose zone hydrology (e.g., this study).  

Tensiometers were used to measure ψ at the BHRS and were installed as 

vertically distributed nests using Advanced Tensiometers (AT) (Sisson et al. 2002) 

installed with a back-fill method which results in very little disturbance of the 

surrounding material (similar to Hubbell and Sisson (1998) and Cassel and Klute (1986) 

– see Chapter 2). Each set was installed as paired shallow and deep nests consisting of 

four deep (AT1 – AT4) and five shallow (AT5 – AT9) ATs with vertical spacing of 0.2 – 

0.3 m between sensors. Two of the three tensiometer sets (TX5B (shallow and deep) and 
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TX5A (shallow and deep)) were monitored in this test with TX5B located within the 

infiltration site and TX5A acting as a control (Figure 3-1 inset). 

Previous analysis of tensiometer data has shown that the ATs require tension 

offsets (i.e., constant tension correction that must be applied to each sensor after 

installation) which are generally < 15 cm and are quasi-stable over time periods of weeks 

to months but can fluctuate by ± 5 cm in that same time period (Aishlin et al. in prep). 

The magnitude and variability of AT offsets are small compared to changes due to natural 

hydrologic events (e.g., rain, changes in water table elevation, or seasonal drying) or 

experienced during the test (Aishlin et al. in prep). Uncertainties in AT offsets are later 

incorporated into the test modeling as instrument errors expressed in the data covariance. 

Soil moisture at the BHRS has been measured using a CPN 503DR Neutron 

Hydroprobe at several access tubes located across the site (Chapter 2). From the summer 

of 2010 until January 2012, vertical profiles of the entire vadose zone were collected at 2 

wk intervals at each of the five access tubes. Moisture data show strong seasonal trends 

of dry soil during hot, dry summer months and wetter soil during cooler, wetter months 

from fall through spring (Johnson et al. 2013b). Two neutron sites were monitored during 

the experiment at 1 hr intervals: NX5B is located within the infiltration test area and 

NX5A is nearby to provide a control (Figure 3-1 inset).  

3.2.2 Preliminary Work 

Tensiometer nests TX5BD (deep) and TX5BS (shallow) and neutron access tube 

NX5B were installed in the spring of 2011 at a location consisting of heterogeneous 

stratified material. Large-scale structure was interpreted from analysis of high-resolution 

GPR data collected in the summer of 2010 which identified a sand channel aligned east-
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west with lateral dimensions of approximately 5 m by 3 m, and thickness ranging from 

0.2 – 0.5 m (Figure 3-2) with thinning to the southeast. The channel lies between coarser, 

mixed sand-cobble materials above and below. TX5BD, TX5BS, and NX5B were 

installed along the long axis of this channel with a horizontal spacing of 1 m between 

each installation (Figure 3-1 and Figure 3-2). 

 

Figure 3-2: 2D GPR radar survey along long axis of channel showing reflections 

associated with distinct sediment transitions inferred as a depositional sand channel 

(dashed lines) and locations of TX5BS and TX5BD ATs (squares) and moisture 

measurements (circles). 

Prior to installation of TX5BD and TX5BS, soil cores were extracted at these 

locations. Cores were separated into material samples based on visual composition breaks 

or, for longer sections where no clear breaks could be identified, into 15.25 cm (6 in) 

samples. Core samples were sieved with mesh diameters (d) between 190 mm and 0.0625 

mm (in the method of Reboulet and Barrash 2003) to develop grain size distributions and 
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to characterize soil type (Figure 3-3). The maximum sampled grain size of these cores 

was limited by the diameter of the core sample (15.25 cm) but large cobbles (d > 20 cm), 

which constitute a major portion of the aquifer material, are ubiquitous and 

underrepresented by this method. Most samples ranged from 50 to 70% by weight gravel 

or cobble (d > 2 mm) with almost no material of silt or finer size (d < 0.0625 mm), and 

were characterized as mixed sand/gravel. Three samples were dominantly sand; of these, 

sections 5S0203 (z = 0.86 – 0.91 m bls) and 5D0202 (z = 0.73 – 0.91 m bls) from 

tensiometer nests TX5BS and TX5BD, respectively, were classified as fine-medium sand 

(80% < 2 mm) and contained only small amounts of silt (< 5 %) and gravel (< 15 %). 

Section 5S0202 (z = 0.66 – 0.86 m bls) from TX5BD was classified as coarse sand and 

contained ~20% gravel. No similar material to 5S0202 was identified in cores from 

TX5BS. The depths of these sand samples were all between 0.7 m and 1.0 m below land 

surface (bls), which corresponds to the depth of the sand channel identified from the GPR 

data. Similar materials from 5S0203 and 5D0202 were interpreted as a continuation of 

the same unit but 5S0202 was interpreted as a local lens, which is confirmed by the GPR 

data (Figure 3-2). Core analysis and stratigraphy from TX5BS were used to determine 

material distributions for the unsaturated flow model (discussed later).  
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Figure 3-3: Grain size classification of TX5BS and TX5BD core samples: Gravel 

(d > 2 mm), Cs. Sand (d > 0.25 mm), Fn. Sand (d < 0.25 mm). Shaded regions 

indicate intervals of sand channel. 

3.2.3 Pre-Test Simulation 

Prior to the field experiment, HYDRUS 1D was used to simulate infiltration and 

provide first-order estimations of optimal rain application rate (P [cm hr
-1

]) and the time 

required to reach steady-state with continuous flow through the entire vadose zone. The 

simulation model was set up as a 1D vertical model consisting of three material layers 

based on GPR data and soil core analysis: material 1 (M1) – mixed sand/gravel; material 

2 (M2) –sand; and material 3 (M3) – mixed sand/gravel. The VGM models (Equation 3-1 

thru 3-4) were used for θ, ψ, and K relationships 
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θR [-] is residual moisture content, θS [-] is saturated moisture content, α [cm
-1

] and n [-] 

are empirical parameters that are linked to capillary height and pore size distribution, 

respectively, but often are treated as shape parameters, Ks [cm s
-1

] is saturated hydraulic 

conductivity, and l [-] is related to soil pore tortuosity but is often assumed a constant 

value of 0.5 for most tests (Simunek et al. 2005), or assumed to be far less sensitive than 

other parameters (Abbasi et al. 2003). Although other mathematical formulas have been 

established for θ(ψ) and K(ψ) relationships (e.g., Brooks and Corey 1964), I exclusively 

use the VGM relationships because they are widely used, are continuous functions, and 

perform well in the modeling used below. 

Material properties of M1 and M3 for the test simulation were estimated from ψ(t) 

data collected in TX5A during natural rain events in December 2010, and for M2 from 

lab infiltration experiments conducted on sand core sample 5D0202 (both methods 

discussed below). The simulation model was used to aid in test design, and to confirm 
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that desired P would not exceed saturated hydraulic conductivities (i.e., no ponding 

above any layers) and would reach steady-state in an acceptable length of time. These 

simulations indicated that a rate of P = 1 cm hr
-1

 would require ~24 hrs to reach steady-

state and would be sufficient to allow continuous flow through the entire vadose zone at 

rates less than the minimum Ks of any of the layers. This optimal P is much higher than 

average storms for the Boise area but is not uncommon for high-intensity storms which 

are more likely to produce flooding and other hazardous conditions, although such storms 

never exceed a few hours in duration in the Boise area. 

3.2.3.1 Winter 2010 Rain Modeling 

In December 2010, several rain events produced observable ψ(t) responses in 

TX5AS and TX5AD, both of which are near the infiltration test location but outside the 

wetted perimeter of the experiment. For these events, P was measured at the Boise 

Agrimet site (see Section 2.2.2) and averaged ~0.25 cm hr
-1

 and storms lasted several 

hours (Figure 3-4). Data from four ATs between 0.47 and 1.92 m bls were used to 

estimate unsaturated hydraulic properties of the soil surrounding TX5AS and TX5AD 

using HYDRUS 1D. 2D GPR reflection surveys collected for a different purpose near 

TX5AS and TX5AD show a clear, continuous reflection within the vadose zone which 

was inferred to be a material horizon. This led to the use of a two-layer model for 

simulation of the December 2010 rain responses with both layers interpreted as mixed 

sand/gravel, but with different VGM parameter values allowed for each. The observed 

tension responses from TX5A nests (Figure 3-4) were used to optimize parameters using 

Monte Carlo sampling along with trial-and-error adjustments. The root-mean squared 

error between observed and simulated ψ(t) was used to determine optimal parameter 
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values which are shown in Table 3-1. Final optimal values were within the range 

expected for sandy soils (for parameters α and n) and BHRS sediments (for parameters θS 

and Ks). In-depth statistical analysis of soil parameters was not performed for these data 

as the goal of this modeling was to quickly provide initial estimates of vadose zone 

properties at the BHRS for use in the pre-test simulations.  

 

Figure 3-4: Results of modeling the winter 2010 rain events measured in TX5A 

showing observed and predicted tension responses to several rain events. 
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Table 3-1: Optimal VGM parameter values from both the winter 2010 rain 

modeling and core lab tests. 

Material Method θS [-] α [cm
-1

] n [-] Ks [cm s
-1

] 

Material 1 
Winter 2010 Rain Response 

0.31 0.22 2.46 0.239 

Material 2 0.27 0.22 1.72 0.150 

5D0203 Core Lab Test 0.33 0.30 2.96 0.0045 

3.2.3.2 Sand Core Properties 

The high-resolution GPR reflection surveys conducted over the infiltration site 

indicated that the fine-medium sand zone did not extend into the area of TX5AD where 

the December 2010 rain responses were modeled. Correct simulation of the infiltration 

experiment thus required inclusion of the effects of this distinctly different material. To 

obtain an initial estimate of parameters, the fine-medium sand core sample (5D0203) was 

repacked into a 5.08 cm ID clear PVC tube, compacted to a length of 16 cm to achieve 

approximately the same volume as the original core sample, and placed under an array of 

greenhouse misters. The top of the core was left open and the bottom was supported with 

a fine mesh screen. Water was applied to the top of the tube at a rate of P = 5 cm hr
-1

 for 

~1 hr, and the times when the wetting front arrived at five chosen vertical locations along 

the length of the tube were measured. Initial θ was assumed to be near zero for the oven 

dried sample, and final θ was determined by the weight of the wet soil column minus the 

dry sample weight (final θ ≈ 0.36). Core porosity was estimated from the volume of the 

dry material (assuming material density of 2.6 g cm
-3

 for quartz sand) divided by the 

volume of the intact core. Estimated porosity was 0.41, which is within the range of 

porosity estimates of BHRS sand zones (Barrash and Clemo 2002). 

 Parameter values for the core material were initially determined using the Rosetta 

Neural Network Prediction module (Rosetta 1999) built into HYDRUS 1D with inputs of 
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%sand, %silt, and %clay (85, 15, 0, respectively) and a bulk density of 1.45 g cm
-3

 as 

measured from the sample dry weight divided by the core volume. θS (i.e., effective 

porosity) predicted from Rosetta was within 0.01 of the estimated porosity (0.41) and 

parameter values predicted by Rosetta were used in HYDRUS 1D to simulate the wetting 

front propagation along the column. The model top boundary was set as a specified flux 

equal to 5 cm hr
-1

 and a free drainage boundary was prescribed at the bottom. The model-

predicted times when the wetting front passed five locations (twf) were compared to the 

actual times measured in the lab. Calculated twf using the Rosetta-predicted values were 

all within 4 min of the observed twf at all measurement locations (Figure 3-5) with a 

correlation coefficient (R
2
) of 0.98. These Rosetta-predicted parameter values (Table 3-

1), though representing properties of a reconstructed core and not in situ properties, were 

used in the pre-test simulation and also to provide a starting point for optimization of the 

infiltration test. As with the December 2010 modeling, an extensive analysis of the 

parameters was not performed as it was not the focus of this experiment. 
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Figure 3-5: Calculated wetting curves at observation nodes and observed wetting 

front times from the sand core rain test performed on core sample 5D0203; tick 

bands show ± 4 min error. 

3.3 Field Infiltration Experiment Setup 

A 5 m by 2 m area surrounding installations TX5BS, TX5BD, and NX5 was used 

for the infiltration test (see Figure 3-1 inset); these dimensions allowed for wetting to 

surround the area of all three installations by ≥ 1 m. During the experiment, the 

infiltration site was covered with waterproof canopies and surrounded with waterproof 

tarps to minimize effects of evaporation and wind redistribution. Water was applied using 

66 Agrifirm 0.5 GPH Turbo-Flo® Mist Nozzles placed 1.5 m above the land surface in a 

staggered grid pattern (0.5 m between misters on a single row and 0.35 m between rows) 

to provide optimal coverage. There are several advantages to using these mist nozzles 

over more conventional sprinklers or drip-lines: 1) small droplet size minimizes impact 

effects; 2) they can be placed at any height above the land surface, which allows for 

access beneath the misters and direct measurements of P at the soil surface; 3) the 

application rate can be easily adjusted by changing either the incoming water pressure, 
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the nozzle height above ground, or nozzle spacing; 4) nozzles are interchangeable and 

available with different flow rates, allowing for further range of application rate; and 5) 

they are inexpensive and can be obtained from most irrigation supply distributers. 

Precipitation rate was measured using four tipping buckets, calibrated prior to and after 

the experiment, placed on the land surface within the application area, and connected to a 

Campbell Scientific CR1000 data logger. Water supplied to the misters was extracted 

from well C6 which is 35 m from the infiltration site. With the low pumping rate (< 5 gal 

hr
-1

), fully-screened well, and high Ks aquifer, water table drawdown (Δwt) near the 

infiltration site caused by pumping was not measurable (Δwt < 0.01 ft) during the test.  

The infiltration experiment began on the morning of August 1, 2011 at 1130 

MDT. Campbell Scientific CR1000 data loggers were used to record ψ in tensiometer 

sets TX5A and TX5B with a measurement frequency of 3 min, and full vertical θ profiles 

were collected every 1 hr in NX5A and NX5B. NX5A and set TX5A (consisting of nests 

TX5AS and TX5AD) were outside the infiltration area but within 2 m of the perimeter 

and were monitored to observe background changes in θ and ψ and to confirm that water 

was not migrating laterally beyond the application area. Water table depth was measured 

in well X5 (<4 m from the infiltration area) at 4 hr intervals and showed no change 

throughout the experiment. Tensiometer data were output in real-time to laptops set up in 

a tent adjacent to the test area to monitor progress. After ~19 hr, it was decided that 

vertical ψ and θ profiles had reached steady-state under wet conditions (pre-test 

simulations predicted ~24 hr), and after waiting another 4 hr the misters were turned off 

at 0721 MDT on August 2. For approximately 11 hr after turning off the misters, all 

measurements were recorded at the same time intervals and by the evening of August 3, 
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2011, much of the equipment was removed and θ measurements were expanded to two to 

three times per day until August 5, 2011. Measurements of ψ continued at 3 min intervals 

until August 5, 2011. Long-term ψ and θ data later showed that soil moisture did not 

return to pre-test values until more than 1 wk after rain application ceased. 

In addition to hydrologic measurements, 2D multi-offset GPR reflection and 3D 

dipole-dipole electrical resistivity surveys were collected every hour during the 

infiltration experiment from August 1, 2011 through August 3, 2011. GPR surveys were 

collected along the main transect of the installations using shielded antennas and the ends 

of this transect extended beyond the wetted area (see Chapter 4 for incorporation of GPR 

data into infiltration test modeling). The resistivity survey also extended beyond the 

wetted perimeter in order to delimit the wetted perimeter and to observe lateral moisture 

migration, if any. Initial review of the 3D resistivity and 2D GPR data along with tension 

measurements in set TX5A and moisture measurements in NX5A (not shown) confirm 

that there was no observable lateral migration of water outside the application area. 

3.3.1 Infiltration Test Results 

The four rain buckets recorded recognizably different P within the experiment 

boundary (Figure 3-6). Buckets 1 and 4 showed mean P of 1.67 and 1.59 cm hr
-1

, 

respectively, with standard deviations (σ) of 0.31 and 0.59 cm hr
-1

 while buckets 2 and 3 

(the two buckets closest to TX5BS, TX5BD, and NX5B) showed considerably less noise 

in the measurements (σ < 0.14 cm hr
-1 

for both) and mean P of 0.77 and 0.92 cm hr
-1

, 

respectively. Higher σ values from buckets 1 and 4 are likely the result of the buckets 

being jostled or becoming tilted during the experiment, as they were located closer to the 

edge of the application plot where there was considerable foot traffic related to 
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geophysical data collection and other logistics. For that reason, I use a constant P of 0.84 

cm hr
-1

 (0.00023 cm s
-1

) determined from the mean of buckets 2 and 3 as the upper 

boundary flux in the infiltration model since these two buckets were located closest to the 

measurement locations. Note that this rate (0.00023 cm s
-1

) is far less than the previously 

estimated Ks of any of the materials (Table 3-1) but is still much greater than natural 

precipitation rates and durations (e.g., events described in the winter 2011 modeling 

section). This was an essential part of the experiment: to avoid oversaturation of 

sediments and ensure continuous flow through all layers. 

 

Figure 3-6: Rain application rate from the four rain buckets, solid lines, and 

labels are mean values and dashed lines are ±σ from all data. 

Measurements of θ were taken in NX5B and NX5A from 0.15 m bls to just above 

the water table (~1.5 m bls) with vertical spacing of 0.15 m (0.5 ft). Four θ(z) and ψ(z) 

profiles from selected times during the experiment are shown in Figure 3-7. Figure 3-7A 

shows initial θ(z) and ψ(z) profiles and Figure 3-7D shows the first measurements after 
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steady-state was reached and prior to ending rain application. Long-term ψ(t) and θ(t) 

data from the beginning of the experiment until several days after are shown together in 

Figure 3-8 for different tensiometer depths and comparable θ measurement depths 

(vertical differences between ψ and θ measurements in Figure 3-8 are less than 20 cm). 

Raw ψ(t) data prior to and during the arrival of the wetting front had a σ of ~2 cm for all 

tensiometers but ψ(t) data after steady-state had been reached became noisier and σ 

values increased to 12 – 14 cm for all tensiometers except AT7 and AT9. All ψ(t) data 

were processed by averaging each data point with the previous and following points (3 

measurements or 9 min window) to reduce noise. This averaging reduced σ for ψ(t) data 

to near 2 cm for all tensiometers but did not significantly affect the timing of the arrival 

of the wetting front nor the shape of the transient portions of the ψ(t) curves. ψ(t) 

measurements at AT7 are not included in the results or in the modeling due to 

questionable behavior prior to the start of the experiment, likely related to a damaged AT 

sensor or housing. 
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Figure 3-7: θ(z) and ψ(z) profiles at select times during the experiment: A) initial 

profiles, B and C) during the test, and D) steady-state. 

 

Figure 3-8: Observed ψ(t) and θ(t) data from the beginning of the experiment to 

10 d after; moisture data presented are from measurement depths nearest to AT 

depths in NX5B; shaded region denotes modeling focus time. 
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Comparison of wetting front arrival times between ψ(t) and θ(t) shows that there 

was a significant delay (~6 hr) in the θ(t) responses at depths of sensors AT6 and AT5 

compared to the ψ(t) responses (Figure 3-8), which is much more of a delay than would 

be expected by differences in depths between the two sets of measurements (< 20 cm). 

Although not shown, ψ(t) data recorded in AT4, located slightly above AT5 but 1 m 

closer to NX5B (see Figure 3-2), are also delayed in arrival of the wetting front compared 

to AT5 by ~3.6 hrs. I suspect the progressively greater delay is due to lateral variation in 

material M3 thickness between TX5BS and NX5B (see Figure 3-2) since AT6, AT5, and 

the corresponding θ measurements are located below the fine-medium sand layer 

observed from core samples and GPR data. GPR data along with core samples from 

TX5BS and TX5BD show that the fine-medium sand section is 7 – 12 cm thicker at 

TX5BD than at TX5BS and that the medium-coarse sand section (5S0202) is completely 

absent at the location of NX5B. The variable thickness of the fine-medium sand zone 

between TX5BS and NX5B combined with the lower Ks of this material (see Table 3-1) 

are likely causing the delay in wetting front propagation between TX5BS and NX5B. The 

significant difference in response times between ψ and θ data at similar depths excludes 

the use of simpler methods of optimizing VGM parameters through direct fitting of 

observed θ(ψ) data as other studies have done (e.g., Milczarek et al. 2006; Vrugt et al. 

2003a).  

3.4 Infiltration Test Model 

Albeit with recognition of the apparent lateral heterogeneity described in the 

previous paragraph, I modeled the infiltration experiment over TX5BS using the 

HYDRUS 1D model as a first approximation and base case to compare with more 
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detailed modeling to follow (which will include 2D distribution of materials and 

geophysical data). Because the heterogeneity limits the use of simultaneous ψ and θ data 

in a 1D model to optimize parameters, I focused on fitting ψ(t) data from TX5BS and 

include only an initial θ measurement (prior to the start of the test: θdry) and final θ 

measurement (after the wetting front had passed and steady-state flow had been reached: 

θwet) for three θ measurement depths corresponding to separate material layers. Tension 

data were chosen as the primary data to fit because they provide a sharper transition from 

dry to wet conditions, and thus a better representation of the wetting front arrival than 

moisture data, and tension data errors are smaller relative to total change in tension than 

moisture data. Including only θwet and θdry was done to achieve better representation of 

the soil properties because it forces the model to find curves that pass through θ(ψ) points 

of the initial and steady-state observations, thus providing further constraint. In this 

regard, Zou et al. (2001) have shown that including only initial and final moisture 

measurements in wetting experiments can increase parameter predictability.  

Material distributions for the infiltration test model were similar to the pre-test 

simulation model except that the infiltration test model was separated into four material 

layers instead of three; in addition to a fine-medium sand layer, the infiltration model 

included a coarse sand with gravel layer represented by core sample 5S0202 (Figure 3-9). 

The model geometry extended from the land surface (z = 0 cm) to z = -300 cm with 

material contact depths determined from GPR data and core samples (Figures 3-2 and 3-

3). M1 and M4 both represent coarse, poorly-sorted, mixed sand/gravel/cobble; M2 

represents medium-coarse sand with gravel (e.g., core section 5S0202); and M3 

represents a uniform medium-fine sand (core section 5S0203). The model was discretized 
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with elements ranging in thickness from 0.54 cm to 5.4 cm and with finer discretization 

around M3. Initial model time (t0) was August 1, 2011 00:00 MDT and the model was 

run for 24 hr, which was adequate time to reach steady-state. Time step discretization is 

internal to HYDRUS 1D software and is continuously adjusted to achieve convergence 

(Simunek et al. 2005). Final mass balance errors were, on average, less than 3% for all 

model runs. 

 

Figure 3-9: A) HYDRUS 1D model setup showing material distribution, grid 

discretization, and locations of measurement nodes; B) initial model ψ and θ profiles 

and initial observed ψ data (circles) prior to test. 

Initial conditions of the model were set using the observed water table depth as ψ 

= 0 cm at z = -176 cm and measurements from the tensiometers immediately prior to the 

experiment to calculate a ψ(z) relationship from the water table to the land surface. 

Observed ψ increased (decreasing negative pressure) above the water table to the depth of 

AT8 (-55 cm) then decreased slightly between AT8 and AT9. Below the water table, ψ(z) 
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was set to a 1:1 function with increasing positive pressure equal to hydrostatic pressure. 

Initial θ(z) values were set automatically based on initial VGM parameters for the four 

different materials and the initial tension profile. Observation nodes were placed at 

depths corresponding to AT9, AT8, AT6, and AT5 with an additional observation node 

placed within material M3 to track θ in that material. Two nodes used for AT9 and AT5 

were used to track θ in M1 and M4. 

The upper model boundary was set as a variable flux boundary with P = 0.84 cm 

hr
-1

 (mean of rain buckets 2 and 3) for the time of rain application (from +11.6 hr to +24 

hr model time) and P = 0 cm hr
-1

 otherwise. The lower boundary was set as a head-

dependent flux boundary with a critical head value of 124 cm (the height of the water 

table above the base of the model). This condition maintains a constant water table depth 

and represents water being dispersed laterally upon reaching the saturated zone (i.e., no 

recognizable mounding). 

3.4.1 Metropolis-Hastings Optimization 

Optimization of VGM parameters was achieved using five independent 

Metropolis-Hastings (MH) sampling algorithms, with five separate initial parameter sets, 

each run to 10
6
 samples. The MH algorithm was similar to the method described by 

Cardiff et al. (2011); below I provide a brief description of the process but refer the 

reader to Cardiff et al. (2011) for further details. The MH algorithm is a Markov Chain 

Monte Carlo (MCMC) type method that seeks to generate a set of samples (the Markov 

Chain) that is representative of the model parameters’ posterior probability density. 

MCMC methods are advantageous for modeling in the vadose zone because models of 

vadose zone behavior (e.g., Richards’ Equation (Richards 1931) and VGM relationships) 
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are strongly non-linear and parameters are often highly correlated, which can complicate 

gradient-based optimization methods (Vrugt et al. 2003b; Vrugt and Bouten 2002). The 

MH algorithm incorporates a downward-stepping function that always accepts parameter 

sets that produce higher likelihood (better fits to data), but also accepts parameter sets of 

lower likelihood with a certain probability. The former ensures that “peaks” of the 

parameters’ posterior probability are discovered, while the latter allows the algorithm to 

explore the full parameter space and rigorously estimate parameter uncertainty. I use the 

MH algorithm over recently developed shuffling algorithms (Vrugt et al. 2003b; Wohling 

and Vrugt 2008) because the MH algorithm is statistically sound, readily available, and 

does not require complicated parallel computing.  

The MH algorithm explores the parameter likelihood or, equivalently, the 

negative log likelihood (NLL) function  

 errd

T

err dCdNLL 
1

2

1
        (3-5) 

where derr is a vector of the error between the observed and calculated data (for both ψ(t) 

and θ(t)) and Cd is the data covariance matrix, a diagonal matrix with elements equal to 

the estimated error, or variance (σ
2
), of the data. For tension measurements, observed data 

error (σψ) was only 2 cm but this incorporates measurement error only. Given the 

additional uncertainty in AT depths and material depths, as well as AT offsets mentioned 

earlier, σψ for Cd was increased to 8 cm to incorporate all errors. For θ measurements, 

observed σθ is 0.03 based on instrument precision (Johnson et al. 2013b) but I used a 

value of twice this amount in Cd to account for uncertainty in measurement depth and 

sampling volume influences of the neutron data. The derr vector included ~100 data 
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points (300 min) for each of the four ATs in TX5BS with the data centered on the times 

when the wetting front passed each sensor, as well as θdry and θwet for each of three 

materials: M1, M3, and M4 (observation nodes AT9, M3θ, and AT5 in Figure 3-9, 

respectively). Selection of ψ(t) data in this manner eliminates large amounts of redundant 

and non-transient data in the optimization. The choice of θdry and θwet is described above. 

VGM parameters θS, α, n, and Ks were optimized for each of the four materials. θR 

was set to a fixed value for each of the material layers based on the measured moisture 

content prior to the test (0.03 – 0.05 for all materials) since θR has been shown to have 

low identifiability in similar modeling experiments (Inoue et al. 1998; Scharnagl et al. 

2011; Simunek et al. 1998). The starting point (initial parameter set) for the MH sampling 

was obtained from the results of a direct search (DS) optimization using the MATLAB 

fminsearch function. Direct search methods have been recommended by Liu et al. (2010) 

to be done prior to MH methods to provide a better starting position. Initial values for the 

DS optimization were obtained from the winter 2010 rain modeling for M1 and M4, and 

results of the lab core experiment for M3. M2 initial values for the DS method for α and n 

were prescribed to that of M3 (similar relatively fine material), and θS and Ks were set to 

values typical of BHRS sand layers (Barrash and Clemo 2002; Barrash et al. 2006). The 

DS optimization reduced the NLL from an initial value of 465 to 223. While the DS 

method did not provide very good fits to observed ψ(t) and θ data, the results did provide 

a better initial state for the MH sampling.  

The robustness of MH methods comes from the use of a large number of 

iterations to explore the parameter space, which makes MH algorithms computationally 

intense and time consuming. The larger the number of iterations (as t approaches ∞) the 
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more likely the algorithm is to find the optimal parameter set and the better it will predict 

parameter variance and joint probability density functions. Liu et al. (2010) and others 

discuss how results from a single MH chain are often insufficient in identifying optimal 

parameters and estimating variance and suggest that multiple chains, starting from 

different initial parameter sets, are better at searching the entire parameter space and 

achieving convergence. The first MH chain (MH1) was started with the initial parameter 

set taken from the results of the DS optimization mentioned above. For the remaining 

chains (MH2 through MH5), the initial sets were chosen by picking four parameter sets 

from within uniform distributions, within reasonable bounds, such that the calculated 

initial NLL of the chosen set (Table 3-2) was < 1.5 times the NLL of the DS results. 
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Table 3-2: Initial parameters used in all five MH sampling runs and lower and 

upper bounds. 

  θS [-] α [cm
-1

] n [-] KS [cm s
-1

] 

M1 

sand / gravel 

MH1 0.31 0.22 2.46 0.239 

MH2 0.23 0.32 2.57 0.064 

MH3 0.20 0.24 3.54 0.018 

MH4 0.34 0.27 1.66 0.312 

MH5 0.23 0.16 1.79 0.108 

Bounds [0.15 - 0.35] [0.04 - 0.5] [1.0 - 4.0] [0.002 - 0.6] 

M2 

cs. sand + gravel 

MH1 0.15 0.22 3.29 0.055 

MH2 0.15 0.28 2.49 0.250 

MH3 0.14 0.46 1.55 0.058 

MH4 0.14 0.28 1.51 0.493 

MH5 0.12 0.40 1.87 0.240 

Bounds [0.10 - 0.40] [0.04 - 0.5] [1.0 - 4.0] [0.002 - 0.6] 

M3 

uniform fine-med 

sand 

MH1 0.33 0.30 2.96 0.0045 

MH2 0.37 0.12 1.38 0.044 

MH3 0.44 0.16 3.96 0.0086 

MH4 0.48 0.27 1.50 0.067 

MH5 0.35 0.15 1.66 0.0033 

Bounds [0.20 - 0.50] [0.04 - 0.5] [1.0 - 4.0] [0.0003 - 0.6] 

M4 

sand/gravel 

MH1 0.27 0.22 1.72 0.150 

MH2 0.19 0.25 3.24 0.089 

MH3 0.20 0.13 3.09 0.294 

MH4 0.30 0.26 3.51 0.240 

MH5 0.35 0.13 3.55 0.246 

Bounds [0.15 - 0.35] [0.04 - 0.5] [1.0 - 4.0] [0.002 - 0.6] 

 

The size of the steps taken between successive samples in the MH algorithm, or 

search radius, was determined by the parameter covariance matrix (Cm) which is a 

measure of the local σ
2
 of each parameter and the covariance between parameters 

(Tarantola 2005). Parameters that have larger σ
2
 will allow the MH sampler to take larger 

steps in that direction, which will more quickly explore the parameter space of less 

resolved parameters. The Cm matrix was estimated from 
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  1
 JCJC d

T

m                (3-6) 

where J is the numerical finite-difference Jacobian matrix evaluated at the current 

parameter set and Cd is the data covariance matrix as in Equation 3-5. In the five separate 

MH chains, Cm was updated every 10
5
 iterations using the latest parameter set to ensure a 

more efficient search of the parameter space as the MH algorithm evolves. 

Prior information can be incorporated into the MH algorithm by several methods 

(Liu et al. 2010) but given the nature of the infiltration experiment and associated 

information, I chose to enforce bounds to all parameters (Table 3-2) based on what has 

been observed at the BHRS for saturated parameters θS and Ks, or what is likely for 

coarse materials for unsaturated parameters α and n. Any parameter set that had one or 

more parameters outside these bounds returned an NLL well above values expected from 

in-range parameters. The average number of out-of-bound samples for the five separate 

chains was between 45% and 65%. 

3.4.2 Potential Scale Reduction Factor 

A scale reduction (SR) factor is used as an unbiased assessment of whether 

multiple MH chains have converged upon a single distribution (Gelman and Rubin 1992; 

Liu et al. 2010; Vrugt et al. 2003a). From Gelman and Rubin (1992): 

W

B

q

q

g

g
SR

11 



         (3-7) 

where g is the number of samples used, q is the number of independent chains, W is the 

mean of all σ
2
 values from each independent chain, and B is the variance of all μ values 
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from each individual chain. The SR should reduce with evolution of the chains as each 

chain samples through the parameter space and statistical aspects of individual chains 

become similar to aspects of all chains combined (Liu et al. 2010). If multiple chains 

converge to the same parameter space with similar statistical properties, SR will approach 

1 and the chains are said to have converged. But, as this is unlikely with uncertainty in 

the data, Gelman and Rubin (1992) suggest that a value of 1.2 is sufficient to declare 

convergence. I calculated SR with all five MH chains beginning at step 5x10
5
 and 

continuing to step 10
6
 and I discuss the results below. 

3.5 MH Results and Parameter Distributions 

Probability distributions for each parameter from each of the five MH chains are 

shown in Figure 3-10 along with the distributions from the set of all five chains combined 

(MHall). Parameter mode (Mo) and standard deviation (σ) values from MHall are 

presented in Table 3-3 along with calculated final SR (after 10
6
 samples). These 

calculations and distributions disregard the first 5x10
5
 samples as a “burn-in” period. 

Final SR for 11 of the 16 parameters was <1.2, implying convergence between chains had 

been reached. Initial NLL values from the five independent chains were: 223, 256, 232, 

232, and 279 but after the first 3x10
5
 samples, NLL was reduced to < 45 for all chains and 

remained primarily between 15 and 35 for the remaining steps (Figure 3-11). The 

consistent range of NLL values within each chain and similar values between chains after 

the burn in suggest that all MH chains reached an optimal minimum NLL region which 

could not be reduced further.  
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Table 3-3: Mode and standard deviation from combined distribution of all five 

MH chains and Scale Reduction after 10
6
 samples. 

  θS [-] α [cm
-1

] n [-] KS [cm s
-1

] 

M1 

sand / gravel 

Moall 0.349 0.085 2.567 0.133 

σall 0.060 0.021 0.285 0.074 

SR 1.58 1.55 1.11 1.67 

M2 

cs. sand + gravel 

Moall 0.102 0.107 1.016 0.012 

σall 0.076 0.132 0.649 0.139 

SR 1.03 1.02 1.07 1.03 

M3 

uniform fine-med 

sand 

Moall 0.261 0.056 1.468 5e-4 

σall 0.037 0.136 0.125 0.004 

SR 1.44 1.02 1.07 2.12 

M4 

sand/gravel 

Moall 0.151 0.381 1.366 0.038 

σall 0.017 0.096 0.080 0.034 

SR 1.08 1.06 1.10 1.16 

 

Figure 3-10: Cumulative distributions of parameters from all five independent MH 

chains and all chains combined (black lines); white circles are mean values from 

combined chains. 
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Figure 3-11: Distributions of NLL for all five chains excluding burn-in, thick black 

line is distribution from MHall; inset shows NLL evolution of first 500K samples 

from individual chains including burn-in. 

Important observations about the resolution of parameters and the sensitivity of 

the experiment and forward model to parameters can be made from the parameter 

distributions in Figure 3-10 and σ values in Table 3-3. 1) Several parameters appear to 

have converged to distributions that were near normal with clearly identifiable Mo values 

(θS,M3, nM1, nM3, nM4, KS,M2, KS,M4) implying convergence between chains and high 

resolution of those parameters with clear optimal values. 2) Distributions for θS,M1, Ks,M1, 

and αM4 show little agreement between individual chains (little overlap) leading to wide 

distributions (high σ) for MHall, which is quantified by SR >1.5 for all three parameters 

and indicates non-uniqueness. 3) Some distributions (θS,M2, θS,M4, KS,M3) were strongly 

affected by the bounding values, which implies that optimal values may be outside the 

bounds (i.e., θS <0.15). As described above, these bounds were based on saturated tests 

performed in this region of the aquifer. As I will discuss below, this is likely related to 
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resolution of parameters and sensitivity of the model to those parameters. 4) Parameters 

αM2, αM3, and αM4 each converged to a single distribution (SR < 1.1 for all) but these 

distributions were nearly uniform and are thus uninformative, implying that those 

parameters have little influence over the model and data fit. Similarly, the fact that σ 

values are more than four times greater for nM2, nM3, and nM4 than nM1 (Table 3-3) implies 

that the model is most sensitive to nM1. More detailed discussion of potential causes and 

implications of these observations will be made below.   

3.5.1 Parameter Covariance and Correlation 

It is widely understood that VGM parameters are often highly correlated and 

cross-correlation, which contributes to non-uniqueness, is ubiquitous in parameter 

inversion in general. In addition to looking at the 1D distributions of parameters I also 

looked at marginal (2D) distributions from MHall and calculated correlation coefficients 

(R
2
) between parameter pairs. Figure 3-12 shows marginal distributions from MHall only 

but trends in distributions and cross-correlation are similar for all individual chains and 

even subsets of chains (e.g., only samples where NLL < 25). Highest R
2
 values for 

parameter pairs within the same material were found between θS-Ks in M1, M3, and M4 

(R
2
 = 0.97, 0.91, and 0.73, respectively), α-n in M1 and M3 (R

2
 = 0.74 and 0.69), α-Ks in 

M1 (R
2
 = 0.83), θS-n in M4 (R

2
 = 0.62), and n-Ks in M2 (R

2
 = 0.80). For all other pairs, R

2
 

values did not exceed 0.6. I show more explicitly in the next section the effects of 

parameter correlation on the physical aspects of the VGM relationships and data fit. 
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Figure 3-12: Marginal distributions from the full set of all MH chains combined 

for each material. 

3.5.2 Parameter Relationship to Soil Characteristic Curves 

Mode values presented in Table 3-3 represent only the most likely set of 

parameters given the data, the forward model, and the current sampling algorithm. Low 

NLL values despite wide distributions and high R
2
 between parameters imply that, for 

many parameters, there is a range of values that will fit the data equally well. What is 

controlling the distribution and movement of moisture within the soil, as depicted by the 

model, is the shape of the VGM θ(ψ) and K(ψ) functions, and individual parameters can 

be considered curve-fitting parameters to these functions.  

To investigate the effects of parameter uncertainty on uncertainty in the θ(ψ) and 

K(ψ) functions, I randomly chose 2000 parameter sets from MHall and plotted 2000 
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different θ(ψ) and log K(ψ) characteristic curves for each of the four materials (Figure 3-

13). Despite the wide range of individual parameters chosen (σ of sets chosen were 

similar to σ presented in Table 3-3), we see that the relationships between parameters, 

whether 2D or higher dimension, combine to produce θ(ψ) and K(ψ) functions that are 

representative of realistic VGM functions and, especially for M1 and M4, are unique and 

informative, with well-defined shapes that are very near curve shapes typical of standard 

agricultural soils (the clear exceptions being M2 functions, which indicate the model’s 

insensitivity to that material’s properties). Stauffer and Lu (2012) made a similar 

inference that curve shapes are more informative than individual parameters (due to 

parameter cross-correlation), and used this to reduce computation time in unsaturated 

flow modeling. 
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Figure 3-13: θ(ψ) and K(ψ) curves produced from 2000 randomly chosen 

parameters sets from MHall; darker shades indicate where more of the curves 

overlap, solid lines represent mean curve values and dashed lines represent ±2σ; 

green lines for M2 curves are from MH2 parameter sets only. 

The successful application of the VGM model and the finding that curve shapes 

and parameter values typical of sand soils can be used to describe in situ flow behavior of 

this conglomeratic alluvial soil implies that more complicated models, such as those with 

corrections to unsaturated soil models (e.g., Bouwer and Rice 1984; Peck and Watson 

1979) or separation of the relatively fine-grained fraction from the coarse fraction (e.g., 

Dann et al. 2009; Tetegan et al. 2011), and the associated additional model parameters, 

are not necessary to characterize unsaturated flow in conglomeratic alluvial soil, 

particularly under natural recharge conditions and where saturation values are low. 
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Figure 3-13 also emphasizes the relationship between parameter predictability and 

the saturation range of the experiment. Final θ values from the experiment were only 

about half of estimated θS (50% saturation) in materials M1 and M4, and Figure 3-13 

shows that more of the 2000 θ(ψ) and K(ψ) curves diverge near saturation, with the most 

clear example coming from M1. Less agreement at high saturation implies poor 

resolution of parameters that influence that portion of the curve: mainly θS and Ks. When 

not constrained by the observed data, θS and Ks represent only end points of the curves 

and thus will be difficult to resolve without outside constraint (e.g., independent 

estimates), a conclusion also reached by Scharnagl et al. (2011). A similar case can be 

made for α, which relates to the bubbling pressure or the ψ value at which θ begins to 

decrease from saturation. If near-saturation is not reached, α may also be difficult to 

resolve, as is evident from the distributions shown in Figure 3-10. Had the experiment 

covered the full range of saturation, θS and α would become more resolved and, given the 

high correlation between θS and other parameters (especially Ks), many other parameters 

would likely be better resolved as well. Fortunately, saturated parameters like θS and KS 

can be easily and accurately obtained from other methods or experiments, which can be 

used to constrain unsaturated models when full saturation is not reached. 

The θ(ψ) and K(ψ) curves shown in Figure 3-13 also indicate the insensitivity of 

the model to M2 – not only to individual M2 parameters, but to the shape of the full θ(ψ) 

and K(ψ) functions. The wide distribution on the M2 θ(ψ) curves, but still low NLL 

values, shows that the forward model and calculated data are insensitive to M2 and that 

given the field experiment (and likely violation of 1D assumptions for M2 especially), the 

model will struggle to resolve M2 parameters in its current capacity. This is not 
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surprising given that θ measurements were not made within M2 and, according to 

installation depths of AT8, ψ measurements were made very near the top of the material 

zone (see Figure 3-9). Had the sensor been located lower in the material, ψ(t) data 

observed would have been more influenced by M2 θ(ψ) and K(ψ) functions, as water 

would have to flow through more of that material before reaching the sensor. 

Interestingly, if we were to look only at θ(ψ) and K(ψ) curves produced from chain MH2 

(μ and σ of curves shown in Figure 3-13), which maintained a higher Mo for nM2 and 

KS,M2 for much of the last 5x10
5
 runs, the θ(ψ) and K(ψ) curves have much better 

agreement and have a shape more similar to typical soils (i.e., clearly defined curve and 

bubbling pressure). It is possible that the higher n and KS values initially predicted by 

MH2, because of the initial parameter set, were due to the sampling algorithm becoming 

temporarily trapped in a local minimum. As MH2 progressed further, it began to approach 

the global minimum approached by the other chains. Had I stopped the algorithm too 

soon, or used only the results from MH2, I would have predicted higher n and KS values 

and more informative θ(ψ) and K(ψ) curves, but would have overestimated the 

dependence of the model to parameters nM2 and KS,M2 and underestimated parameter 

uncertainty. 

In Figure 3-13, I show how the range of optimal parameters predicted by the MH 

sampling produced wide distributions of some parameters but that those parameters still 

work together to produce informative θ(ψ) and K(ψ) relationships over the range of 

saturation achieved by the experiment (similar concept as Stauffer and Lu 2012). To 

show the model’s ability to reproduce the observed ψ(t) and θ(t) data from the 

experiment, I took a similar approach as in Figure 3-13 of using a random sample of 
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parameter sets from within the final distributions. In Figure 3-14, I show fits to observed 

ψ(t) and θ(t) data for 2000 forward model runs using randomly chosen parameter sets. 

Figure 3-14 further emphasizes that uncertainty in input parameters does not necessarily 

correlate to uncertainty in the calculated data or negate the model’s ability to capture 

observed behavior. 

 

Figure 3-14: ψ(t) and θ(t) intensity plots calculated from 2000 parameter sets taken 

from MHall for the four observed AT and three moisture measurement depths; 

darker shades indicate where more of the curves overlap; solid lines are mean 

values and dashed lines are ±2σ. White circles are observed data. 
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3.6 Conclusions 

Final parameter distributions from the last 5x10
5
 samples of the five MH chains 

produced similar mode values and 11 of the 16 parameter distributions converged, as 

measured by the SR factor. Marginal distributions and R
2
 showed that some material 

parameters were very highly correlated (R
2
 > 0.9), specifically θS-KS and α-n. Despite the 

range of parameter values within individual and combined chains, θ(ψ) and K(ψ) curves 

predicted by randomly chosen parameter sets were generally in agreement within the 

range of observed ψ, θ, and K produced by the experiment and diverged as the curves 

approached saturation, which was not reached by the experiment. Similarly, ψ(t) and θ(t) 

predicted from the same randomly chosen sets were in very good agreement with each 

other and with the observed data despite wide distributions of some parameters, 

indicating parameter non-uniqueness.  

The results of this chapter highlight the strong non-uniqueness of unsaturated 

hydraulic properties of coarse, conglomeratic material specifically, and unsaturated 

materials in general, and the difficulty involved in obtaining a single ideal set of 

parameter values for a given material under natural field conditions, especially when 1D 

assumptions are violated and optimal data are not collected for all materials. Gathering 

additional information, such as ψ(t) and θ(t) in each material layer, covering the full 

range of saturation during the experiment (i.e., by applying precipitation at rates far 

exceeding natural conditions), or constraining parameters with prior information, would 

lead to tighter, more informative distributions of VGM functions but would likely still be 

burdened by parameter cross-correlation and non-uniqueness.  
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In conclusion, this chapter 1) presents the successful application of a field-based 

infiltration experiment to characterize in situ unsaturated hydraulic properties for a coarse 

(sand, gravel, and cobble), alluvial sediment sequence, 2) shows that high infiltration 

rates (i.e., greater than natural precipitation rates for longer periods) can be 

accommodated by conglomeratic soil despite relatively low porosities and high 

concentration of large cobbles, 3) highlights the difficulty in developing soil 

characteristic curves for coarse soil types under natural infiltration conditions, given that 

moisture levels may not reach saturation and thus certain parameters like θS and KS will 

be difficult to resolve, and 4) suggests that soil characteristic functions developed for 

fine-grained agricultural soils, such as van Genuchten-Mualem relationships, can be 

successfully applied to predict in situ unsaturated flow behavior of coarse, conglomeratic 

alluvial soils. 

In the next chapter, I extend the conceptual model of the infiltration test volume 

to a 2D model that incorporates the observed variation in material thickness and I use the 

full suite of ψ(t) and θ(t) data to estimate VGM parameters. The additional complexity of 

the 2D distribution of materials, along with allowing for lateral flow, helps to further 

constrain parameter distributions and reduce uncertainty in parameter values. 
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CHAPTER 4: ESTIMATION OF 2D DISTRIBUTION OF UNSATURATED 

HYDRAULIC FUNCTIONS OF A COARSE STONY SEDIMENT SEQUENCE FROM 

A FIELD-SCALE INFILTRATION EXPERIMENT, BOISE HYDROGEOPHYSICAL 

RESEARCH SITE 

Much of the work presented in this chapter has been developed into a research 

journal article to be submitted to Vadose Zone Journal with the following authors: 

Michael J. Thoma, Warren Barrash, John H. Bradford, and Michael M. Cardiff. 

4.1 Introduction 

Chapter 3 established that van Genuchten-Mualem (VGM) relationships could be 

used to accurately describe infiltration in coarse, conglomeratic sediments even with high 

uncertainty in individual parameters and high parameter cross-correlation. This is 

because, as shown in Chapter 3 (see Figure 3-13), the shape of the VGM curves (i.e., 

θ(ψ) and K(ψ) functions) is what controls unsaturated flow, not individual parameters. 

The modeling and optimization in Chapter 3 failed to constrain VGM parameters to 

within an acceptable level of uncertainty, which was partially attributed correlation 

between parameters in Chapter 3, but is also due to the use of only partial θ(t) data and 

the inability of the 1D model to represent lateral variation in material distributions. The 

exclusion of the full θ(t) data set was due to significantly different percolation rates 

between TX5BS (where ψ(t) data were measured) and NX5B (where θ(t) data were 

measured) (Figure 4-1 or see Figure 3-8).  
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Figure 4-1: ψ(t) and θ(t) responses for the full infiltration period and partial 

recovery period at selected depths (z [cm bls]). 

In this chapter, I expand the 1D model presented in Chapter 3 to a 2D model that 

better represents our knowledge of the material structure within the infiltration test 

volume. The 2D model incorporates lateral variations in material thickness (measured 

from GPR data) and allows for lateral moisture flow. The 2D model also includes the full 

ψ(t) and θ(t) data sets in parameter optimization. Optimization of the 2D model was done 

in three main stages. Stage 1 used direct sampling from within the final parameter 

distributions from Chapter 3 to determine if parameter values for the 2D model were 

within the range of the 1D model results. Stage 2 used multiple direct-search optimization 

chains to fit either θ(t), GPR reflection travel-time data (discussed below), or all data 

simultaneously (θ(t), ψ(t), and GPR data). Stage 2 results show, among other things, that 

fitting both θ(t) and ψ(t) data cannot be achieved with the current model despite 

parameter values that are similar and are from overlapping distributions. This is because 
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VGM curves (i.e., θ(ψ) and K(ψ) functions) developed from optimal parameter values are 

not directly matched for material M3 which is shown to be caused by lateral 

heterogeneity within the M3 layer not previously identified from GPR data. In Stage 3 I 

separate M3 laterally into two materials creating a five-material model. A final direct 

search optimization with the five-material model was then used to estimate VGM 

parameters for all five materials, and Latin-hypercube Sampling was used to estimate 

uncertainty which was significantly reduced from the results in Chapter 3. 

In this chapter I also develop a method from observed GPR data to use the 

changes in travel-time from a material reflection boundary (Δtbndry) to track changes in θ 

across the full 2D model profile. The Δtbndry data were used in parameter optimization but 

the current model failed to accurately fit the observed Δtbndry data and so did not provide 

additional constraint of parameters. Near the end of this chapter I address some of the 

issues with this method and speculate why it failed to work with the current data.  

4.2 Methods 

4.2.1 Development of the 2D Model 

The 2D model was built to include the variation in material thickness and to 

represent the vadose zone structure along the instrumentation axis (line of TX5BS-

TX5BD- NX5B and GPR line in Figure 3-1) using HYDRUS 2D (Simunek et al. 1999). 

The 2D model (M2D) extended 1 m beyond the wetted area at each edge and to a depth 

of 3.0 m bls. Initial ψ(x,z) was prescribed the same vertical distribution as the 1D model 

(M1D) of Chapter 3 and was homogeneous in the x direction. Model time started on 

August 1 at 000 MDT (11.5 hrs before precipitation started, to ensure that initial 
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conditions would not greatly affect results) and the model was run for 48 hrs to 

encompass the full wetting of the vadose zone. The lower boundary was set as a constant-

head boundary with head = 124 cm referring to the constant water table depth during the 

infiltration experiment. From x = 1 m to x = 7 m, the upper model boundary was 

prescribed a variable-flux boundary equal to the mean precipitation rate (P = 0.84 cm hr
-

1
) for the time of preciptiation (t = 11.5 – 32 hr model time) and was prescribed to P = 0 

for all other times.  

Initial material structure was derived from the GPR profile data collected along 

the instrumentation axis prior to the infiltration test, but was later finalized using one of 

the GPR x-t profile images taken after steady-state had been reached but before the rain 

application ended. At this snapshot (t = 32 hr model time), the vadose zone possessed the 

highest θ of any time during the experiment (providing highest resolution of GPR data) 

and was at steady-state. Pre-stacked, depth migrated, multi-offset GPR data were used 

with reflection tomography (Bradford 2008) to determine a velocity structure and to 

accurately determine depths of material boundaries (Figure 4-2; see Figure 3-2 for GPR 

data). The velocity structure was also determined at each 1 hr interval and used with the 

CRIM equation (Jol 2009) to estimate θ(x,z,t) distributions. The full set of GPR-derived 

θ(x,z,t) data is not discussed here since it was used in this chapter only to provide semi-

quantitative confirmation of model-predicted θ distribution. Two-way travel time to the 

M3-M4 boundary derived from the GPR data was used throughout the experiment to 

track changes in θ and is discussed later in this chapter. 
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Figure 4-2: M2D material structure, boundary conditions, and observation nodes 

(● = ψ measurements, ■ = θ measurements). 

HYDRUS 2D is a finite-element model where element size (distance between 

nodes) can either be determined automatically, or constrained by the user by setting 

refinement points (Simunek et al. 1999). As with all discretized models, a compromise 

must be made between run time (increases with finer discretization) and model accuracy 

(also increases with finer discretization). I chose to define element size between 0.005 m 

and 0.05 m in areas corresponding to material breaks and measurement locations, and as 

≤ 0.1 m elsewhere in the model. The final model consisted of ~18,000 finite-element 

nodes and took between 4 and 8 min to run on a standard desktop computer. 
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Observation nodes were placed at element nodes corresponding to depth and 

lateral dimension of five ψ measurement locations (AT9, AT8, AT6, AT5, AT4) and nine 

θ measurement locations (N1 – N9 in Figure 4-2). ψ(t) and θ(t) data were output from the 

model for these observation nodes at 6 min increments. 

4.2.1.1 Volumetric Moisture Sampling 

The neutron moisture probe used to measure θ during the experiment records an 

average θ over the full volume of influence and this volume is dependent on the average 

θ with the relationship 

3
1

15


 R          (4-5) 

where R [cm] is the radius of the spherical sampling volume (IAEA 1970). The effect of 

sampling volume on θ measurements in less severe in homogeneous soils, but where 

sharp breaks exist between soils of different composition (e.g., M1-M3 or M3-M4 

boundaries), measurements taken near the boundary may be influenced by the nearby 

material even if the measurement depth is not within that material. To maintain the 

highest level of accuracy possible when using the θ data in the model, I use Equation 4-5 

to calculate the average predicted θ at each observation node from all nodes within the 

sampling radius R, and assign that average θ value to the observation node. In Figure 4-3, 

I compare raw, model-output θ, and averaged θ using Equation 4-5 for  observation nodes 

N3, N4, and N5 from the M2D model to show the importance of this correction. 
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Figure 4-3: Comparison of raw (solid line) and averaged (dashed line) predicted θ 

at observation nodes N3, N4, and N5. 

4.2.2 Incorporation of GPR Data 

The GPR data collected during the infiltration test were used to estimate material 

depths by estimating the electromagnetic wave velocity (vEM) and reflection times to 

various boundaries (tbndry) to determine the depth of those boundaries (Bradford 2008). 

Figure 3-2 in Chapter 3 shows only a single GPR profile taken prior to infiltration to 

illustrate material depths because vEM is a function of θ, and so the estimated vEM and thus 

tbndry will vary throughout the experiment as θ in the vadose zone increases. As water 

percolates through the vadose zone and the average θ increases between the land surface 

and a material boundary, vEM decreases and the observed tbndry increases. If tbndry of a 

continuous reflector (i.e., material boundary) can be tracked through the time-lapse GPR 

images, the change in tbndry (Δtbndry) can be used to estimate the change in overall θ 

between the land surface and the reflector depth. In Figure 4-4 I show GPR profile data 

from four different times during infiltration to show the change in tbndry of the M3-M4 

reflection as θ increases. 
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Figure 4-4: GPR profile data from four times during infiltration: A) prior to test 

(0 hrs), B) 4 hrs into infiltration, C) 10 hrs, D) 16 hrs; dashed lines highlight M3-M4 

material boundary. 
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The 2D time-lapse GPR data were analyzed in the following way to provide the 

information described in the preceding paragraph: 1) a continuous reflector was identifed 

that corresponded to the M3-M4 material boundary (see Figure 4-2). This reflector was 

not only continuous across the profile but easily identified in nearly all of the time-lapse 

GPR images. 2) tbndry for this reflector was picked along the profile for all of the time-

lapse images by selecting the time of peak amplitude. For certain time-lapse images 

where the continuous reflector could not be readily picked, it was interpolated from either 

points surrounding it or from its location in previous or later time-lapse images. 3) Δtbndry 

along the length of the 2D profile was determined over the time of infiltration by 

subtracting tbndry of the current measurement time from the initial tbndry. In Figure 4-5, I 

show Δtbndry through the full experiment time (including partial recovery) extracted at 1.0 

m intervals across the profile. The increase in Δtbndry with increase in x is due to higher θ 

in the thicker M3 material in the right half of the model (see Figure 4-2). 

 

Figure 4-5: Observed Δtbndy data at 1.0 m intervals across the GPR line. 
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The M2D model was used to predict Δtbndry throughout the infiltration portion of 

the test (11.5 – 30 hr model time) using the time-derivative of the Complex Refractive 

Index Method (CRIM) equation (Jol 2009), which relates relative dielectric permittivity 

of the bulk soil (εbulk) to θ: 

        airwatermatrixbulk 1        (4-6) 

where εbulk, εmatrix, εwater, and εair are the relative dielectric permittivities of the bulk soil, 

the soil solid matrix, water, and air, respectively and ɸ is the soil porosity. Using the 

relationships between εbulk and vEM for non-magnetic, low-loss soil 

bulk

EM

c
v


           (4-7) 

and 

bndry

M
EM

t

d
v 42

          (4-8) 

where vEM is discribed above, c is the speed of light (3x10
8
 m s

-1
), and dM4 is the depth of 

the reflector corresponding to the top of the M4 boundary. The multiplier of 2 

corresponds to the two-way travel time recorded by the GPR equipment. Combining 

Equations 4-6 thru 4-8 and solving for time yields: 

        airwatermatrix
M

c

d
t 1

2 4
.     (4-9) 

Taking the derivative of Equation 4-9 with respect to θ I arrive at: 
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bndry
c

d
t          (4-10) 

and see that Δtbndry is a linear function with Δθ and the slope is only a function of 

constants εw (~80 for freshwater), c, and 2dM4. 

At each model output time, the full 2D distribution of θ was interpolated into 

equally-spaced columns at 0.1 m intervals between the left and right model boundaries. 

Within each column the average θ between the surface and dM4 (i.e., M3-M4 material 

boundary) was determined and used with Equation 4-10 to estimate Δtbndry of the M3-M4 

boundary. In later optimization, the calculated Δtbndry was compared to the observed 

Δtbndry from the GPR data at 1 m intervals across the model every 3 hrs. 

A quick check of the above equations was perfomed to ensure they accurately 

describe Δtbndry by manually calculating Δtbndry from Δθ measured in NX5B above the 

M3-M4 boundary between initial and steady-state times. This “true” value was then 

compared to the observed Δtbndry from GPR data at the location of NX5B (x = 5 m). 

Average Δθ estimated at NX5B was 0.10 ± 0.03, and using Equation 4-10  and a value of 

81 cm for dM4, I arrive at a value for steady-state Δtbndry of 4.2  ± 1.28 ns. Observed 

Δtbndry at the location of NX5B is ~6.5 ± 0.5 ns, which is 2.3 ns error. If I invert Equation 

4-10 and use the observed Δtbndry as input, the required Δθ to produce a 6.5 ns Δtbndry is 

0.15 ± 0.01. Error between these manual calculations may be (a) the result of uncertainty 

in observed Δθ (particularly near the M3-M4 boundary where measured Δθ will be 

influenced by M4 material, likely with lower θ, while GPR-derived Δθ is not), (b) due to 

the coarse sampling of θ measurements, or (c) due to error in estimating dM4. It is also 

possible that the additional θ required to accuratly fit Δtbndry data can be found through 
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optimization below and still fit the observed ψ(t) and θ(t) data, so I withhold my 

discussion until later in the chapter. 

4.3 Parameter Optimization 

This section describes the setup and results of a sequence of optimization methods 

to identify optimal material parameters for the M2D model. The first method is based on 

direct sampling (DSm) from within the M1D final distributions of Chapter 3 (see Figure 

3-10) and was used to determine whether parameter distributions developed from the 1D 

modeling Chapter 3 can be used to successfully predict ψ(t) and θ(t) with the M2D 

model. The second method uses multiple direct search (DSr) chains to identify optimal 

parameters for individual objective functions designed to minimize misfit of either θ(t), 

Δtbndry, or all data combined (ψ(t), θ(t), and Δtbndry). The results of these first two methods 

imply that a four-material model is not sufficient to predict both ψ(t) and θ(t) data 

simultaneously, and I later alter the M2D model by adding lateral variation in M3 and 

thereby increasing the number of materials to five. The five-material model (M2D-5L) is 

then used with a single DSr run and Latin-hypercube Sampling (LHS) to optimize 

parameters and estimate parameter uncertainty. 

Optimization of the M2D model was based on the model’s ability to accurately 

predict the observed ψ(t), θ(t), or Δtbndry data, which was quantified with the negative-log 

likelihood function (NLL) 

 ierrid

T

ierri dCdNLL ,

1

,,
2

1



           (4-11) 

where derr,i is a vector of the error between the observed and calculated data set, Cd,i is the 

data covariance matrix, a diagonal matrix with elements equal to the estimated error, or 
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variance (σ
2
), of the data, and i refers to the data set being measured with i corresponding 

to ψ(t), θ(t), or Δtbndry data. For ψ(t) data, observed σψ was set to 8 cm which incorporates 

measurement error along with additional uncertainty in measurement depths and AT 

offsets mentioned in Chapter 3. Observed σθ is 0.03 based on instrument precision 

(Johnson et al. 2013b) and I use this value in Cd,θ. For Δtbndry data I estimated σΔt from the 

observed variance of tbndry data at steady-state, which was ~0.5 ns.  

The value of NLL depends on the length of the derr vector, which depends on the 

data set. For ψ(t), I included ~100 data points (300 min) for each of the five ATs with the 

data centered on twf at each sensor. For θ(t) data, I use 12 data points (12 hr) at each 

measurement depth, again centered on twf. For Δtbndry, I chose to compare data at 3 hr 

intervals at 1 m spacing in the x-direction (35 points). The overall accuracy of the model 

(i.e., its ability to fit all data) is measured by the weighted-sum NLL value  

tt NLLwNLLwNLLwNLL         (4-12) 

where wψ, wθ, and wΔt are individual weights used to adjust the influence of each 

objective function over ΣNLL. NLLψ was on average three times greater than NLLθ so wθ 

was set to a value of 3 to provide equal influence of each function. Because I was 

primarily interested in fitting ψ(t) and θ(t) data, Δtbndry data were treated as a secondary 

data set so wΔt was set to 1 to avoid over-influence from NLLΔt. 

4.3.1 Method 1: Direct Sampling 

The Direct Sampling (DSm) method investigates the ability of the M1D final 

parameter distributions to predict the observed 2D data and involves direct use of 

complete parameter sets (all 16 parameters in a single MCMC step) in the M2D model. A 
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random selection of 2000 non-repeating sets was chosen from the M1D distributions and 

each set was run in the M2D model.  

There was, however, one caveat with selection of the 2000 sample sets which 

introduced bias into the second half of the selected sets (sets 1001 – 2000). The MCMC 

algorithm searches for the minimum objective function value given the parameters and, 

once a minimum is found, tends to stay within that parameter space. Many of the final 

sets from the M1D model found optimal values of n in M2 (n2) between the lower limit 

(n2 = 1) and n2 = 1.1 such that >60% of the first 1000 DSm sample sets had n2 values 

between 1.0 and 1.1 (Figure 4-6). Sample sets were not nearly so constrained with respect 

to other parameters as they were with n2 and most other parameters ranged through much 

of the a priori distributions. However, I wanted to avoid undersampling the full range of 

n2 and so, for the second 1000 sample sets. I constrained sampling to a priori sets where 

n2 > 1.1. Although this limited some other parameters, the second 1000 sets covered 

nearly the full range of the a priori distributions for all but four paramters: θS2, KS2, α3, 

and KS3. The most extreme case was KS3 where σ for the n2-constrained set is two orders 

of magnitude lower than when n2 is unconstrained (Figure 4-6). It is important to note 

that the distribution of the M1D objective function values (i.e., how well the parameter 

sets fit the data in the 1D model) was not significantly different between the first and 

second 1000 parameter sets. 
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Figure 4-6: M1D parameter distributions of full sets (solid grey) and n2-

constrained sets (red outline). 

Each of the 2000 DSm parameter sets were run in the M2D model and final 

distributions of NLLψ, NLLθ, and NLLΔt are shown in Figure 4-7, separated into the 

first1000 samples and second1000 samples. When n2 > 1.1 (n2-constrained), the 

distributions of NLLψ, NLLθ, and NLLΔt  are more narrow and are shifted to lower values 

(i.e., better fits to the observed data), but cover the same range of NLL when n2 is 

unconstrained. This implies that constraining n2 is not significantly limiting the model’s 

ability to fit the observed data while avoiding oversampling parameter space with high 

NLL values (i.e., poor-fitting parameters). Minimum values and NLLψ, NLLθ, and NLLΔt 

were 159, 67, and 15.8, respectively and were found in the first, second, and first1000 

sets (minimum value of NLLθ from the second 1000 sets was 68.7). The M2D predicted 
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ψ(t), θ(t), and Δtbndry from each best-fit data set (i.e., minimum NLLψ, NLLθ, and NLLΔt ) 

are shown in Figures 4-8 and 4-9. The success of the M2D model at predicting the 

observed ψ(t) data provides validation of model consistency between the M1D and M2D 

models.   

 

Figure 4-7: Distributions of NLLψ, NLLθ, and NLLΔt from the direct sampling 

investigation separated by unconstrained sets (grey) and n2-constrained sets (red). 
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Figure 4-8: Optimal fits to ψ(t) and θ(t) from minimum NLLψ, NLLθ, and NLLΔt 

parameter sets of the DSm method (note different y-axis for N3 and N4); shaded 

regions show ±1σ data error. 

From the ψ(t) and θ(t) data fits (Figure 4-8) we see that minimum sets from NLLψ 

and NLLΔt fit the observed ψ(t) and θ(t) data equally well, although neither set accurately 

predicts twf of θ(t) data below 60 cm and both predict earlier twf than what is observed. 

The minumum NLLθ set accurately predicts θ(t) data and closely predicts ψ(t) data for all 

sensors except AT4, where it is predicting much later twf than what is observed. The 

implications of improper fitting of AT4 will be discussed below. 

In Figure 4-9 I show the observed and calculated Δtbndry data for all three 

minumum DSm sets and we see that none of the direct sampling sets came close to fitting 
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the observed Δtbndry data except near the beginning of the GPR line (left side of model). 

Near the end of the model time (t = 30 hr), after steady-state had been reached, 

differences between observed and calculated Δtbndry are 2.2 – 3.3 ns, which is similar to 

error in manually-calculated Δtbndry above. This is somewhat surprising given that ψ(t) 

and θ(t) data are closely matched with the same parameter sets, specifically the initial and 

steady-state θ(t), which are responsible for Δθ and will have the greatest influence over 

Δtbndry. I withhold further investigation of Δtbndry fits until the next section where 

optimization is focused on, among other things, directly minimizing NLLΔt. 

 

Figure 4-9: Optimal fits to Δtbndry from minimum NLLψ, NLLθ, and NLLΔt 

parameter sets of the DSm method; shaded regions show ±1σ data error. 

From the results of the DSm investigation I make three conclusions about the 

ability of the M1D parameter distributions to predict M2D data: 1) constraining n2 > 1.1 

does not inhibit optimization of NLLψ or NLLθ (i.e., the model’s ability to predict ψ(t) or 

θ(t) data) but instead appears to eliminate sampling much of the “bad” objective function 
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space, where more of the poor-fitting parameter sets are found. 2) Lack of abundant 

correlation between NLLψ and NLLθ (Figure 4-7) suggests that there may not be an 

optimal data set that fits all ψ(t) and θ(t) data equally well (especially when considering 

ψ(t) in AT4). 3) The model-predicted ψ(t) and θ(t) data show that the DSm sets more 

accurately predict ψ(t) data than θ(t) or Δtbndry data, which is expected given that the DSm 

sets were sampled from distributions that fit ψ(t) data in the M1D model. In the next 

section, I attempt to directly minimize NLLθ, NLLΔt, ΣNLL using a multi-start direct 

search approach. 

4.3.2 Method 2: Direct Search Inversion 

The DSm method provided acurate fits to observed ψ(t) and θ(t) data 

independently but fell short of accurately predicting both data sets simultaneously or 

predicting Δtbndry. Since both ψ(t) and θ(t) data could be closely predicted from parameter 

sets within the M1D distributions, I continue with optimization of the four-material 

model using the M1D distributions as the a priori sampling sets. In this section, however, 

I use a DSr algorithm to further optimize parameters and predict θ(t) and Δtbndry data 

separately (i.e., minimizing NLLθ or NLLΔt), and all data simultaneously (minimizing 

ΣNLL). I do not apply the DSr algorithm exclusively to NLLψ since optimal parameter 

distributions were explored in the M1D sampling Chapter 3. 

Nine independent DSr algorithms were run with the MATLAB function 

fminsearch using three starting parameter sets chosen from within the second 1000 DSm 

sets (n2-constrained). The three starting sets were sampled randomly from within the first, 

second, and third terciles (range of 33% probability) of the NLLψ distribution to ensure 

unique starting values. For each of the three starting sets, the DSr algortihm was run three 
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times: once with the objective function set to NLLθ, once with it set to NLLΔt, and once 

with it set to ΣNLL. For the optimization using ΣNLL, wθ was set to 3 to provide more 

balanced influence of NLLψ and NLLθ on ΣNLL. Values of wψ and wΔt were both set to 1. 

Each DSr chain was run to 300 iterations and was constrained within original bounds of 

the MCMC sampling in Chapter 3 (see Table 3-2) to maintain realistic and reasonable 

parameters, maintain computational efficiency (e.g., avoid excessive run time), and 

provide reasonable model convergence rates (i.e., limit the number of runs that do not 

converge). Initial and final NLL values and percent reduction from each DSr run are 

presented in Table 4-1. In each case, the DSr run minimized its primary objective 

function and improved the fit to its assigned data set. 

Table 4-1: Initial and Final NLL values and percent reduction from nine 

separate DSr runs; bold values highlight which objective functions were reduced for 

which runs. 

 

 

r1 r2 r3 r4 r5 r6 r7 r8 r9 

N
L

L
ψ
 Initial 314 207 242 314 208 243 315 208 243 

Final 703 581 659 1144 210 1002 134 128 158 

% red. -124% -180% -172% -264% -1% -313% 58% 39% 35% 

 

 
         

N
L

L
θ
 Initial 78.0 94.0 82.2 78.0 94.0 82.2 78.0 94.0 82.2 

Final 38.3 41.3 38.4 804 134 408 84.1 89.8 84.2 

% red. 51% 56% 53% -930% -43% -396% -8% 4% -2% 

 

 
         

N
L

L
Δ

t Initial 18.7 17.0 18.3 18.7 17.0 18.3 18.7 17.0 18.3 

Final 22.7 20.7 22.9 11.0 15.8 12.0 15.5 14.9 17.9 

% red. -21% -22% -25% 41% 7% 34% 17% 13% 2% 

 

 
         

Σ
N

L
L

 Initial 411 319 343 411 319 343 411 319 343 

Final 764 643 721 1959 360 1422 233 232 260 

% red. -86% -102% -110% -376% -13% -315% 43% 27% 24% 
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Runs r1 – r3 (which minimized NLLθ) very accurately predicted θ(t) data (NLLθ < 

42) but final parameter sets did not accurately capture twf of ψ(t) data (Figure 4-10) or 

Δtbndry (not shown). Optimal parameter values for runs r1 – r3 are fairly consistent 

between the three DSr runs (Table 4-2) for materials M1, M3, and M4 but optimal M2 

parameter values, especially n2, are drastically different between the three DSr runs. This 

corroborates the results of the DSm above where optimal n2 values were either on the low 

end (e.g., 1.77) or high end (e.g., 3.84) of the sampling range. The optimization in 

Chapter 3 also identified large uncertainty of M2 parameters as well as θ(ψ) and K(ψ) 

curves for M2, and attributed it to lack of direct sampling in M2 of ψ(t) data (due to depth 

distribution of ATs) and θ(t) data (due to finite lateral dimension of M2). 
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Figure 4-10: Observed and final predicted ψ(t) and θ(t) data from runs r1 – r3 

(note different y-axis for N3 and N4); shaded regions show ±1σ data error. 

 

Table 4-2: Optimal material parameters from DSr minimization of NLLθ. 

 
θS [-] 

[r1, r2, r3] 

α [cm
-1

] 

[r1, r2, r3] 

n [-] 

[r1, r2, r3] 

KS [cm s
-1

] 

[r1, r2, r3] 

M1 [0.21, 0.24, 0.23] [0.09, 0.07, 0.10] [2.39, 2.65, 2.29] [0.20, 0.27, 0.28] 

M2 [0.10, 0.17, 0.10] [0.38, 0.11, 0.50] [1.77, 3.84, 1.21] [0.23, 0.30, 0.038] 

M3 [0.29, 0.29, 0.29] [0.13, 0.08, 0.15] [1.54, 1.71, 1.52] [1.3, 0.5, 0.7]x10
-3

 

M4 [0.21, 0.20, 0.19] [0.46, 0.35, 0.43] [1.49, 1.47, 1.46] [0.03, 0.025, 0.019] 
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Runs r4 – r6 had NLLΔt as the primary objective function but none of the runs 

were able to accurately predict Δtbndry to within the the observed data error and final 

Δtbndry errors were again between 2.6 and 3.7 ns (Figure 4-11). Run r4, which reduced 

NLLΔt to 11.0, not only underpredicted final Δtbndry but also severely underfit ψ(t)  and 

θ(t)  data (final NLLψ = 1002; final NLLθ = 408). Of the three runs that minimzed NLLΔt, 

only r5 did not result in drastically high NLLψ and NLLθ values, but still r5 did not predict 

Δtbndry with sufficient accuracy. Predicted θ(t) and ψ(t) data from run r5 are shown later in 

Figure 4-12 and I do not show fits from runs r4 or r6 since they do not come close to the 

observed ψ(t) or θ(t) data. Final parameter values for runs r4 – r6 are presented in Table 

4-3 and are similar between runs for M3 and M4 but have higher disagreement for M1 

and M2. Disagreement between these parameters is somewhat irrelevant since none of 

the parameter sets accurately predict the observed Δtbndry. 

 

Figure 4-11: Observed and calculated Δtbndry data from runs r4 – r6; shaded 

regions show ±1σ data error. 
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Table 4-3: Optimal material parameters from DSm minimization of NLLΔt. 

 
θS [-] 

[r4, r5, r6] 

α [cm
-1

] 

[r4, r5, r6] 

n [-] 

[r4, r5, r6] 

KS [cm s
-1

] 

[r4, r5, r6] 

M1 [0.22 0.34 0.28] [0.10, 0.10, 0.12] [1.91, 2.60, 2.02] [0.019, 0.240, 0.080] 

M2 [0.12, 0.17, 0.10] [0.24, 0.11, 0.44] [1.10, 3.78, 1.11] [0.269, 0.273, 0.023] 

M3 [0.26, 0.25, 0.27] [0.14, 0.04, 0.10] [1.84, 1.72, 1.87] [0.4, 0.7, 0.4]x10
-3

 

M4 [0.17, 0.16, 0.16] [0.43, 0.40, 0.40] [1.52, 1.35, 1.10] [0.054, 0.025, 0.026] 

 

Runs r7 – r9 were set-up to minimize the misfit to all data and reduced ΣNLL by 

43%, 27%, and 23%, respectively, but most of that came from reduction of NLLψ 

(reduced 58%, 38%, and 39%). Because of the negative correlation between NLLψ and 

NLLθ observed from the DSm investigation discused above, each run led to an increase in 

NLLθ of 4 – 8 %. Positive correlation between NLLψ and NLLΔt led to reduction in NLLΔt 

of 18%, 13%, and 2% for each run but, as discussed in the above paragraph, greater 

reduction of NLLΔt does not necessarily produce accurate fits to the observed Δtbndry data. 

Final ψ(t) and θ(t) data fits from runs r7 – r9 are shown in Figure 4-12 along with fits 

from run r5. Runs r7 – r9 fit ψ(t) data much better than θ(t) data despite the unbalanced 

weighting applied in ΣNLL. In each of runs r7 – r9, as with the DSm results, accurate fits 

to ψ(t) data lead to early prediction of twf for θ(t) data, particulary below 60 cm. Final 

parameter values for runs r7 – r9 are presented in Table 4-4 and are similar for M1, M3, 

and M4 between runs, and are also in the same range as parameters from runs r1 – r6. 
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Figure 4-12: Observed and final predicted ψ(t) and θ(t) data from runs r5 and r7 – 

r9 (note different y-axis for N3 and N4); shaded regions show ±1σ data error. 

 

Table 4-4: Optimal material parameters from DSr minimization of ΣNLL. 

 
θS [-] 

[r7, r8, r9] 

α [cm
-1

] 

[r7, r8, r9] 

n [-] 

[r7, r8, r9] 

KS [cm s
-1

] 

[r7, r8, r9] 

M1 [0.25, 0.32, 0.27] [0.08, 0.08, 0.11] [2.20, 2.29, 2.19] [0.12, 0.26, 0.16] 

M2 [0.13, 0.11, 0.12] [0.46, 0.16, 0.48] [2.45, 3.99, 1.35] [0.22, 0.27, 0.019] 

M3 [0.27, 0.25, 0.25] [0.08, 0.06, 0.10] [1.67, 1.82, 1.54] [1.0, 1.2, 0.9]x10
-3

 

M4 [0.14, 0.16, 0.16] [0.31, 0.43, 0.48] [1.29, 1.35, 1.34] [0.018, 0.026, 0.038] 

 

Initial values of all parameters from the DSr inversion were within the range of 

n2-constrained M1D distributions but minimum/maximum value bounds were taken from 
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the original MCMC bounds in Chapter 3 (see Table 3-2) to allow greater search of the 

parameter space. In Figure 4-13, I show the final DSr parameter values from runs r1 – r3 

and r7 – r8 (runs r4 – r6 are excluded since they fail to fit any of the observed data) and 

optimal DSm values from sets that minimzed NLLψ and NLLθ for each of the 16 

parameters along with the minimum and maximum M1D values (i.e., range of final 

distributions calculated in Chapter 3). Each parameter is further separated by the 

objective function it minimized (i.e., NLLψ, NLLθ, or ΣNLL). The distribution of these 

optimal parameters shows that final values for four of the 16 parameters (θS2, α2, n2, KS3) 

are outside of the M1D distribution ranges, which negates the initial hypothesis that the 

M1D distributions can be used to accurately predict M2D data and implies that wider 

parameter distributions may be necessary to obtain proper fits to all M2D data. Figure 4-

13 also shows the level of agreement between parameters when different objective 

functions are minimzed. Parameters such as θS4, α1, n3, n4, KS1, and KS4 have a narrow 

range despite fitting different data sets while α2, α3, n2, and KS2 have much wider ranges 

for all objective functions and even between runs minimizing the same objective 

function. 
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Figure 4-13: Optimal parameter values from DSm and DSr grouped by data set 

each minimized. 

Four main conclusions can be drawn from the DSr optimization presented in this 

section that relate to the model’s ability to predict the observed data. Each conclusion is 

described below and conclusions 3 and 4 are discussed in more detail in the following 

section as they relate to material heterogeneity and physical limitations of the model. 

1)  The model and optimization algorithms are struggling to find optimal parameters 

that fit the observed Δtbndry data despite focusing on fitting those data exclusively, 

and parameters that come closest fail to fit ψ(t) and θ(t) data. When taken with the 

error in manual calculation of Δtbndry, this implies that there may be a fundemental 

error in the conceptual relationship between Δθ and Δtbndry used in this method. I 

hypothesize that this error is the result of either uncertainty in θ distribution 

within the vadose zone (i.e., small-scale sand lenses or open pores that may be 
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holding high θ but not drastically affecting the flow of water) or improper use of 

the conceptual relationship between Δθ and Δtbndry (i.e., CRIM equation may not 

be idealy suited for this relationship). Regardless, for the remainder of this study I 

focus only on fitting ψ(t) and θ(t) data.  

2)  Optimal values of the M2D model are found that fit the observed θ(t) or ψ(t) data 

(runs r1 – r3) within the associated error, but not all optimal parameter values are 

within the range of the M1D distributions. This implies that optimal values for 

θ(t) may not be within the range of optimal values for ψ(t) found in the M1D 

model. 

3)  The model struggles to correctly match both ψ(t) and θ(t) data simultaneously, 

particulary at AT4 and θ(t) depths below 60 cm. From comparison of Figure 4-10 

and Figure 4-12, there appears to be a trade-off between fitting ψ(t) and θ(t) data. 

When successful fits to the θ(t) data are achieved the model closely predicts ψ(t) 

data in AT5 – AT9 but predicts later twf for AT4. When successful fits to ψ(t) data 

are achieved, the model predicts early twf at θ(t) measurement depths below 60 

cm. This depth is the approximate depth of the top of M3 and implies that the 

source of disagreement in twf is within M3.  

4)  Final parameter values found with runs r1 – r3 and r7 – r8 (which minimized 

NLLθ and ΣNLL, respectively) are similar for materials M1, M3, and M4, which 

suggests that only small changes in parameters are necessary to fit ψ(t) or θ(t) 

data.  

5)  Nearly all M2 parmeters show wide ranges for nearly all parameters from the nine 

different DSr inversions and, in some cases, cover nearly the full range of 
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parameter values. This supports the findings in Chapter 3 that the model is 

insensitive to M2 parameters. I suspect, as in Chapter 3, that this is related to the 

discontinuous distribution and lack of direct sampling in M2.  

4.3.3 Comparison of θ(ψ) and K(ψ) Functions 

From comparison of parameter values in Figure 4-13 we see that some parameters 

occupy a narrow range (e.g., θS4, α1, n4, and KS1), while others cover a wide range (e.g., 

α2, n2, and KS2) for all three objective functions. This expresses the variability in model 

sensitivity to individual parameters. More importantly, I cannot identify any parameters 

that show clear distinction between value sets that minimize ΣNLL and those that 

minimize NLLθ. This indicates that individual values that fit ψ(t) data are not significantly 

different from values that fit θ(t) data, and this seems to confirm the DSm results that 

only minor changes in parameter values are necessary to fit either ψ(t) or θ(t) data. 

Overall, the results from the previous section imply that the current four-material model 

is insufficent to fit both ψ(t) and θ(t) data and the reason is not simply due to individual 

parameter values.  

One of the conclusions in Chapter 3, as well as what was reached by Stauffer and 

Lu (2011), was that parameter values of the VGM functions are not as informative as the 

functions represented by those parameters (i.e., θ(ψ) and K(ψ)). This is primarily because 

unique relationships between individual parameters combine to produce specific θ(ψ) and 

K(ψ) relationships. For each of the eight optimal parameter sets above (two from the 

DSm method and six from the DSr method), I used Equations 4-1 thru 4-4 to develop 

θ(ψ) and K(ψ) curves for each of the four materials (assuming θR = 0.03 and l = 0.5; see 

Chapter 2). In Figure 4-14 I show these curves classified by which objectve function the 
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curves optimized (either NLLψ or NLLθ). The wide range of M2 parameter values 

produced large uncertainty in M2 curves and, as mentioned previously, implies 

insensitivity of the experiment and model to M2 material properties. Other material 

functions, however, show similar curve shapes from all parameter sets and only θ(ψ) in 

M4 and K(ψ) in M3 appear to differ significantly between objective function sets. It is 

worth mentioning that comparison of Figure 4-14 to Figure 3-13 in Chapter 3 shows 

similar curve shapes predicted between the M2D and M1D models. 

 

Figure 4-14: θ(ψ) and K(ψ) relationships developed from optimal parameter values 

from the DSm and DSr methods for different objective function sets. 

Divergence of θ(ψ) curves in M4 occurs only near saturation and beyond the 

maximum θ measured in M4 (maximum θ and K in each material are show in Figure 4-

14). Because full saturation was not reached during the experiment, divergence at higher 

θ levels will not significantly influence percolation rates and moisture distribution as 
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much as curve shape below maximum θ, where curves from the different objective 

function sets agree.  

Divergence of K(ψ) in M3, however, is much more significant, especially when 

considering that K(ψ) in Figure 4-14 is on a natural log scale. When NLLθ is minimized, 

the model consistently predicts about an order-of-magnitude lower K(ψ) than when NLLψ 

is minimized. The shift of the K(ψ) curve has the effect of slowing percolation rates 

through M3 so that observed θ(t) data are correctly matched, but this also has the effect 

of slowing percolation rates at AT4, which is under approximately equal thickness of M3. 

Conversely, when fitting ψ(t) data the model shifts K(ψ) curves to produce faster 

percolation rates through M3 to fit ψ(t) data, particularly in AT4, and this creates earlier 

twf at θ(t) measurement locations within and below M3. This shifting between higher and 

lower K(ψ) curves is likely what is causing the model to struggle to fit both data sets 

simultaneously, and it would be better that material M3 be seperated into two materials 

between AT4 (TX5BD) and where θ(t) measurments are made (NX5B), which I do in the 

following section. 

4.4 Five-Material Model 

The results from the optimization and analysis above all point to the conclusion 

that there is sufficient heterogeneity within material layers, especially M3, such that a 

four-material model is not capable of reproducing the observed ψ(t) and θ(t) data. 

Furthermore, from Figure 4-14 it appears that the most striking heterogeneity is within 

material M3 between AT4 and NX5BS. In the five-material model (M2D-5L) developed 

in this section, I separate material M3 into two materials (M3A and M3B) directly 

between TX5BD and NX5B (at x = 4.8 m from left model edge) and apply separate 
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parameter values of θS, α, n, and KS to each sub-material (Figure 4-15). Initial parameter 

values for M3A (left-side material) were chosen from M3 values, which optimized ΣNLL 

(and also minimized NLLψ) in the DSr runs (run r6) and for M3B (right-side material) 

initial values were chosen from M3 of DSr run r1. For materials M1, M2, and M4, I used 

r1 values as well since they closely matched both ψ(t) and θ(t) data.  

 

Figure 4-15: Material distribution of the M2D-5L model. 

I then applied a final DSr optimization to the M2D-5L model by varying all 20 

parameters and using the sum of weighted NLLψ and NLLθ (NLLψθ = wψ NLLψ + wθ NLLθ 

where wψ = 1 and wθ = 3) as the objective function to be minimized. After 300 runs, 

NLLψθ reduced from 524 to 306 (41% reduction) and produced very good fits to both ψ(t) 

and θ(t) data with NLLψ = 171 and NLLθ = 45. Final predicted ψ(t) and θ(t) data from this 
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DSr run along with runs r1 and r8 (both from four-material model, for comparison) are 

shown in Figure 4-16, and final M2D-5L material parameters are presented in Table 4-5. 

As predicted above, it appears that significant difference in KS between M3A and M3B 

was necessary to fit both ψ(t) and θ(t) data simultaneously. The values presented in Table 

4-5 represent the current optimal parameter values of the five materials of the M2D-5L 

model. Final optimization and uncertainty analysis of the M2D-5L model was achieved 

through LHS, as discussed in the next section. 

 

Figure 4-16: DSr optimal final fits to ψ(t) and θ(t) data using the M2D-5L (five-

material) model along with fits from r1 and r8 using the M2D (four-material) model 

(note different y-axis on N3 and N4); shaded regions show ±1σ data error. 
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Table 4-5: Optimal material parameters from DSr run of M2D-5L model. 

 θS [-] α [cm
-1

] n [-] KS [cm s
-1

] 

M1 0.28 0.10 2.41 0.162 

M2 0.11 0.35 1.84 0.301 

M3A 0.26 0.05 1.89 1.6x10
-3

 

M3B 0.27 0.14 1.48 1.3x10
-3

 

M4 0.21 0.35 1.50 0.032 

4.4.1 Parameter Uncertainty of M2D-5L Model 

The LHS method was developed to explore the parameter space of a model in an 

unbiased fashion and to ensure that each region of a parameter space is represented, 

regardless of its probability (McKay et al. 1979). The LHS method begins with 

discretizing the cumulative probability distributions of each parameter into a pre-

determined number of bins, each with equal range of probability (p). The parameter 

values from each bin are then randomly mixed so that different combinations of 

probabilities are equally represented and each bin is sampled once and only once for each 

parameter (Cheng and Druzdzel 2000). I provide a brief example to illustrate this process 

below. 

Consider two parameters each represented by a uniform distribution such that 0 < 

p(x1) ≤ 1 and 0 < p(x2) ≤ 1. First we divide each distribution into N bins and assign each 

bin a number 1:N where the number refers to the bin probability range of the cumulative 

distribution function (cdf) of x1 or x2.  Figure 4-17 shows an example where N = 5. Next 

we permutate each parameter column to achieve a mixed sample set (Figure 4-17B). This 

ensures that parameters with mixed probabilities are represented in the final sample sets. 

Each row of the permutated matrix corresponds to a single parameter set used in a single 

model run.  
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p(x1,x2) x1 x2  p(x1, x2) x1 x2 

(0.2, 0.2) 1 1  (0.2, 0.2) 1 1 

(0.4, 0.4) 2 2  (0.8, 0.4) 4 2 

(0.6, 0.6) 3 3  (0.4, 0.6) 2 3 

(0.8, 0.8) 4 4  (1.0, 0.8) 5 4 

(1.0, 1.0) 5 5  (0.6, 1.0) 3 5 

A  B 

Figure 4-17: Example of LHS with two parameters and N = 5; A) original set, B) 

after permutation. 

The success of LHS to represent the entire parameter space with a relatively small 

number of samples (much smaller than full grid search methods require) lies in the value 

of N. When N is low (as in Figure 4-18A), there are gaps in the parameter space and 

ranges of parameter values that are unrepresented. As N is increased, each individual 

parameter set is still not used but zones of the full parameter space are more represented 

(Figures 4-18B – 4-18C). As N is increased indefinitely, the corresponding range between 

samples eventually diminishes to values below the sensitivity of the model. 
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Figure 4-18: Examples of LHS matrix with different values of N: A) N = 5, B) N = 

20, C) N = 50, D) N = 200. 

For the M2D-5L model with five materials and four parameters per material (20 

total parameters), a full grid search would require N to the power of 20 individual model 

runs. Even using a value as small as N = 5 would require ~1x10
14

 individual model runs. 

By using LHS we can greatly reduce the number of model runs while still exploring the 

parameter space and mixed-probability parameter sets. The value of N is often chosen by 

a trade-off between run time and accurate representation of the parameter space. For the 

LHS of the M2D-5L model I chose N = 10000 which, at 4 – 7 min runtime per model, 

would require >34 d to complete. However, total runtime was reduced to < 5 days 

through the use of parallel processing. 

Selection of the a priori sampling distribution (i.e., cdf(x)) is critical to the success 

of LHS. If it is too narrow, large portions of the parameter space will be under-sampled 

and optimal zones may be completely overlooked. If the distribution is too broad, the 
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value of N required to get a well-discretized parameter space would be proportionately 

large. Based on the results of the DSr optimization of the M2D model along with the final 

parameter values from the DSr optimization of the M2D-5L model, it is likely that 

optimal parameter values that accurately fit the observed data are near the final M2D-5L 

values presented in Table 4-5. I therefore limit our a priori distributions to be within 

normal distributions of θS, α, and n, and lnKS for each material with mean (μ) equal to 

Table 4-5 values and standard deviation (σ) equal to 15% of mean values. 

In Figure 4-19, I show the final LHS distributions of NLLψ, NLLθ, and NLLψθ and 

see that there is significant range of each NLL value despite only a σ = 15% range in 

parameter sampling distributions (σ = 139, 303, and 930 for NLLψ, NLLθ, and NLLψθ, 

respectively). We see there is also very strong correlation between NLLθ and NLLψθ (R
2
 = 

0.98) implying that NLLψθ is more sensitive to NLLθ than NLLψ. This may be due to 

higher data error in θ(t) than ψ(t), or weighting NLLθ too heavily. Minimum values of 

NLLψ, NLLθ, and NLLψθ were 130, 43, and 332, respectively.  
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Figure 4-19: Distributions of NLLψ, NLLθ, and NLLψθ from the LHS of M2D-5L 

model. 

To estimate uncertainty in final parameters, I calculated σ for each parameter 

from the set that included all LHS runs where NLLψθ was within 150 % of the minimum 

value (i.e., where NLLψθ < 499, which included 292 samples). I will refer to this as the 

S150 set. Mean and σ values from the S150 set are presented in Table 4-6 and fits to ψ(t) 

and θ(t) data from the set from S150 that produced the lowest NLLψθ values (best-fitting 

set), the highest NLLψθ value (worst-fitting set), and the optimal set from the direct search 

(Table 4-5), are shown together in Figure 4-20.  
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Table 4-6: Mean and σ (italic) values from LHS S150 sets. 

 θS [-] α [cm
-1

] n [-] KS [cm s
-1

] 

M1 
0.284 0.101 2.496 0.163 

0.0287 0.0126 0.2698 0.0406 

M2 
0.109 0.355 1.892 0.303 

0.0167 0.051 0.2291 0.0536 

M3A 
0.262 0.046 1.904 2.7x10

-3
 

0.038 0.0065 0.2607 0.0022 

M3B 
0.281 0.136 1.534 1.7x10

-3
 

0.0329 0.0191 0.1124 0.0011 

M4 
0.209 0.349 1.537 0.0359 

0.0246 0.0531 0.1073 0.0186 
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Figure 4-20: Fits to ψ(t) and θ(t) data from selected LHS S150 sets and final DSr 

set of the M2D-5L model (note different y-axis on N3 and N4); shaded regions show 

±1σ data error. 

Analysis of the LHS results implies that the optimal values from the DSr 

optimization of the M2D-5L model are from a very narrow, local minumum (narrow 

since NLL values increase rapidly outside of this minimum). Uncertainty of these optimal 

parameters can be estimated from the normalized standard deviation values (σ/μ), which 

are presented in Table 4-7 for θS, α, n and ln KS for all materials. Calculation of σ/μ was 

not used in Chapter 3 but I use the final distributions from that chapter  (Table 3-3) to 

calculate it, and I present it in Table 4-7 for comparison. With the additional complexity 

of the 2D model and using both the θ(t) and ψ(t) data. we see that the M2D-5L model 
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considerably reduced the uncertainty (up to 36 %) in individual parameter values from 

the M1D model in Chapter 3. 

Table 4-7: Estimated normalized standard deviation from the S150 sets and the 

final M1D distributions in Chapter 3. 

M2D-5L 

σ/μ [%] 

M1D 

σ/μ [%] 

 θS α n  KS   θS α n KS 

M1 10.1 12.5 10.8 13.2 M1 22.4 28.2 10.1 40.3 

M2 15.2 14.4 12.1 14.4 M2 41.8 49.7 46.9 28.5 

M3A 14.5 14.3 13.7 11.9 
M3 13.7 50.6 7.8 11.3 

M3B 11.7 14.1 7.3 8.4 

M4 11.8 15.2 7.0 13.6 M4 9.6 32.0 5.9 17.5 

4.5 Discussion 

4.5.1 Uncertainty in Δtbndry Model 

The failure of the M2D model to fit Δtbndry data (despite focusing directly on 

minimizing NLLΔt) together with the overall poor fit to the observed data imply there may 

be error in: (a) the conceptual understanding of the system; (b) the mathematical 

formulation of it (i.e., Equations 4-6 through 4-10); and/or (c) correctly picking the 

reflection from the GPR data. Conceptually, it is well established that changes in θ 

produce lower vEM and increases in travel-time. The model certainly predicts this 

behavior but the overall observed Δtbndry is not being achieved. The mathematical 

formulation (Equation 4-10) is a simple derivative of the CRIM equation (Equation 4-9) 

and the values of c and εw are very well established. The value of dM4 was based on GPR 

data collected during the infiltration test after steady-state had been reached. The high θ 

at this time produced the clearest image and best estimates of material depths. The depth 

estimates were also confirmed by core samples in TX5BS and TX5BD but may contain 

some error (likely < 10 %).  
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Likely the largest sources of uncertainty in the Δtbndry data are in shifting the raw 

GPR data to the air wave arrival and picking the arrival time of the material reflection. 

Correction of the air wave is necessary to account for changes between the record time 

(time the GPR receiver antenna begin recording) and the pulse time (time when the 

transmitting antenna releases the electromagnetic pulse). When the top layer of the soil is 

very dry and the transmitter and receiver are close together, there may only be a small 

difference between the arrival times of the air wave and ground wave and it may be 

difficult to accurately pick the air wave. The raw GPR data show very good resolution of 

material layers in the initial profile (see Figure 4-4A) and better resolution at later times 

(see Figure 4-4D), but at times within a few hours of the start of infiltration there is 

considerable noise in the GPR profile data. The noise is likely caused by scattering due to 

differential wetting near the surface (finger flow). This noise leads to uncertainty in 

picking the material reflection in the first few profiles when the majority of Δtbndry occurs 

(first few hours of data in Figure 4-5). Overall, great care was taken in picking the air 

wave and reflections from the raw data but this is currently the most likely source of error 

in the observed Δtbndry data. 

4.5.2 LHS Results 

The LHS method was used to estimate uncertainty in final parameter values for 

the M2D-5L model because it provides a robust and relatively quick estimate of 

uncertainty surrounding mean parameter values. Metropolis-Hastings methods (similar to 

what was used in Chapter 3) would likely produce a better estimate of uncertainty and be 

more appropriate for comparison of the Chapter 4 results to the Chapter 3 results. 

However, this was not practical given the run time of the M2D-5L model. The M1D 
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model required 3 – 6 s to complete a forward model run and10
6
 model runs could be 

achieved in a realistic amount of time (the overall run time was significantly reduced due 

to out-of-bound values). The M2D-5L model, however, required 4 – 7 min to complete a 

forward run so a similar Metropolis-Hastings type optimization was not practical. A 

detailed comparison of the uncertainty between the M1D model and M2D-5L model 

might best be achieved by having the same analysis methods applied to both models, but 

the results at the end of this chapter still provide a substantial, and practical, comparison. 

In the preceding section I state that the LHS requires an a priori distribution 

within which to search. The provided distributions used in this chapter were normally 

distributed about the M2D-5L DSr results (providing the mean values) with σ = 15 % of 

those values. Some of the values presented in Table 4-7 are very close to 15 % (e.g., θS2) 

which implies that the distribution of values within the S150 sets has an equal width to 

the a priori distribution. This suggests that the LHS results may be underestimating the 

actual uncertainty for some parameters because the search distributions are constrained 

by the a priori distributions (i.e., the sampling range is smaller than what may actually fit 

the data). Several of the normalized σ values, however, are considerably < 15 % and 

greatly reduced from the M1D values, implying an overall improved uncertainty in the 

M2D-5L model. 

4.6 Conclusions 

In this chapter, I extended the four-material 1D model described in Chapter 3 to a 

four-material 2D model that incorporated the observed heterogeneity from GPR data, and 

ultimately to a five-material 2D model that included additional heterogeneity identified 

from parameter optimization. I also introduced a method using reflection travel-time data 
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from GPR profiles to estimate changes in θ. Using direct-search optimization methods. I 

estimated final VGM parameter values for the five-material model that accurately fit ψ(t) 

and θ(t) data. I then used LHS to estimate parameter uncertainty (σ/μ), which was < 15 % 

for all parameters and signficantly reduced from results in Chapter 3. Optimal parameters 

could not be identified that successfully fit GPR reflection travel-time data. 

This chapter concludes that incorporation of lateral variability in material 

thickness and hydraulic properties is necessary to accurately fit ψ(t) and θ(t) data sets 

simultaneously and reduce parameter uncertainty. Additionally, this chapter shows that 

small changes in material parameters of < 20 % (i.e., changes that may be within the 

range of accepted parameter error) can lead to significant differences in θ(ψ) and K(ψ) 

relationships. Under the particular conditions presented in this study, which cover the 

likely range of field θ for realistic infiltration rates in coarse conglomeratic soils, such 

differences in θ(ψ) and K(ψ) functions can lead to considerable changes in predicted 

unsaturated flow rates.  
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CHAPTER 5: SUMMARY AND FUTURE WORK 

5.1 Summary 

The work presented in this dissertation was used to determine whether 

unsaturated flow relationships, specifically van Genuchten-Mualem relationships (VGM), 

can be applied to coarse, conglomeratic material without alteration and, if so, to estimate 

the range of VGM parameters for such materials. VGM relationships are well established 

for fine-grained sediment (d < 2 mm) but have seldom been applied directly to coarse 

material (d > 2 mm) or to conglomeratic sediment because measurement of unsaturated 

flow properties in these materials is difficult and the nature of unsaturated flow in coarse, 

conglomeratic material, specifically the effect of large cobbles, is not well understood.  

Chapter 2 presented a brief overview of the BHRS in order to establish it as a 

natural, well-studied research site. Chapter 2 provided important information about 

installation and instrument calibration for measurements made in the vadose zone at the 

BHRS. It also showed seasonal trends in θ and ψ data and aquifer responses to natural 

precipitation (which highlights the high-conductivity nature of the BHRS material).  

Chapter 3 described the details of the infiltration test including how preliminary 

data were used to identify structure, estimate initial material properties, and aid in test 

design. It presented θ(t) and ψ(t) observations along with the design of a 1D model to fit 

ψ(t) and partial θ(t) responses at different measurement depths and within different 

material layers. The purpose of the 1D model was to establish the appropriateness of 
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VGM relationships for describing unsaturated flow in layered, coarse, conglomeratic 

material and to provide an initial estimate of parameter distributions and uncertainty. 

Chapter 4 extended the 1D modeling in Chapter 3 to a 2D model that incorporated 

observed lateral variations in material thickness. The purpose of the 2D modeling was to 

reduce uncertainty in VGM parameter values by increasing the level of complexity (by 

including both lateral flow and lateral heterogeneity in material thickness and properties) 

and constrain the VGM relationships by including the full ψ(t) and θ(t) data sets in 

parameter optimization. Parameter optimization with the 2D model identified additional 

heterogeneity in one of the model materials between ψ(t) and θ(t) measurement locations. 

A five-material, 2D model was then developed and used to fit the full ψ(t) and θ(t) data 

sets, predict final VGM parameter values, and estimate parameter uncertainty (σ/μ), 

which was reduced up to 36 % from 1D model results. Chapter 4 also presented a method 

whereby travel-time data from GPR data are used to track changes in θ, but the results 

suggest substantial error in picking GPR reflections such that the method was 

unsuccessful with the current data. 

The results of this project show that the VGM relationships can be applied 

directly to coarse, conglomeratic sediment and can accurately predict flow at low 

saturation (i.e., saturation levels likely experienced under natural conditions including 

high-intensity rain events). The direct application of VGM relationships implies that the 

same processes that control unsaturated flow in fine-grained sediment control flow in 

coarse sediment as well, and that the coarse gravel/cobble sized particles do not 

significantly inhibit unsaturated flow, at least at low saturation in such sediments with 

negligible silt or clay fractions. This may be counter-intuitive since most reasearch on 
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saturated flow in stony sediment concludes that cobbles increase tortuosity, and thus 

reduce conductivity but I theorize that, at low saturation, there is already high tortuosity 

caused by water forced to travel along thin films around soil grains, and the increased 

tortuosity caused by large cobbles is insignificant. That is, at low saturation, the hydraulic 

conductivity of the bulk sediment is dominated by the inter-cobble material. However, 

this theory was developed from the results of one test, in one type of material only and 

the effects/results may be different in materials with different inter-cobble material (i.e., 

with more silt or clay). 

There are very few published values of VGM parameters for coarse material and 

even fewer that are based on in situ measurements. To my knowledge, this work is some 

of the first research that shows that typical θ(ψ) and K(ψ) functions can be applied to 

coarse, conglomeratic sediment and presents some of the first measured values of in situ 

VGM parameters for this type of sediment. The advancements made in this dissertation 

can be applied to a host of hydrological situations where quantifying moisture flow and 

distribution in coarse sediment needs to be addressed. Such include, but are not limited 

to, issues with precipitation seepage in mine waste or cover material, estimating 

infiltration and drainage capacity of gravel roadbeds, modeling heat flow by advection in 

conglomeratic material (e.g., climate change impacts on glacial outwash or permafrost; 

ecohydrology applications), and remediation efforts at contaminated sites (e.g., Hanford 

Site in central Washington). 
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5.2 Future Work 

Below I present examples where future work could advance the understanding of 

unsaturated flow in coarse, conglomeratic soil by building on the work presented in the 

preceding chapters. 

Chapters 3 and 4 established that the VGM relationships (and likely similar 

relationships) that were developed for fine-grained soils can be successfully used to 

predict unsaturated flow in coarse, conglomeratic soil without correction or treatment of 

the fine-grained material separate from the bulk material. The overall implication of this 

is that cobbles do not significantly alter unsaturated flow, and that the relatively fine-

grained material (inter-cobble matrix) is the primary influence on unsaturated flow 

properties. This hypothesis could be easily tested by estimating VGM parameters for the 

fine-grained matrix of a similar conglomeratic sediment and comparing the values to 

what is presented in Chapters 3 and 4, or what is estimated from the in situ material 

sample. Parameters α and n have the most control over θ(ψ) and K(ψ) at low saturation 

levels (i.e., levels experienced during the test presented in Chapter 3) and should provide 

the most insight into this hypothesis. 

This project only looked at one type of conglomeratic material, which was 

composed of coarse sand with gravel and cobble sized particles. I concluded that the 

cobbles do not significantly influence unsaturated flow under natural conditions because 

hydraulic conductivity is high enough in the inter-cobble matrix to support flow at the 

low-saturation levels. In finer-grained, conglomeratic sediment (i.e., sediment of a high 

fraction of silt or clay with gravel and cobbles), where conductivity is lower in the inter-

cobble matrix, there may be a greater influence of the cobbles. The type of experiment 
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presented in Chapter 3 (or similar in situ experiments) could be applied to different 

sediments to develop a more thorough understanding of cobble influences over the full 

range of constituent grain size, from silt/clay to coarse sand. 

Estimation of the VGM relationships was achieved using θS, α, n, and KS as fitting 

parameters and I excluded θR and l. θR was excluded because previous studies, as well as 

my own sensitivity analysis, indicated the models were far less sensitive to this parameter 

than others. Additionally, the dry initial state of the infiltration test volume provided 

confident a priori estimates of θR. Parameter l was excluded because most studies on 

unsaturated flow consider it to have a constant value of 0.5 (Simunek et al. 2005). In the 

VGM relationships, l represents the tortuosity index and influences only the K(ψ) 

relationship. Several studies that investigated the influence of cobbles in sediment infer 

that the cobbles act primarily to influence tortuosity (e.g., Mehuys et al. 1975; Bouwer 

and Rice 1984). Additionally, since the decision to move from a four-material to a five-

material model in Chapter 4 was based on the shape of the K(ψ) curve, it would be 

valuable to establish what role l plays in this or other experiments on coarse soil and 

whether a constant value of 0.5 is appropriate for coarse, conglomeratic sediment 

(without an appreciable silt or clay fraction) as it is for fine-grained sediment. Along 

these same lines, it would also be valuable to test other θ-ψ-K constitutive relationships 

(e.g., Brooks and Corey 1964) to see which parameters of those relationships have the 

greatest influence. 

The high conductivity nature of coarse sediments in general, and BHRS material 

specifically, result in a well-drained vadose zone. In Chapter 3 I highlighted the rapid 

movement of infiltration through the vadose zone, and in Chapter 2 I showed examples of 
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natural precipitation producing measurable rises in the water table across the research 

site. The selection of precipitation rate for the infiltration test was limited to rates that 

would not saturate the fine-medium sand layer and thus would allow continuous flow 

through the full sediment sequence. However, the rate used was similar to high-intensity 

storms of the Boise area but the duration was significantly greater than such storms. 

During the test there was substantial wetting in the fine-medium sand layer but Δθ in 

other materials was only 6 – 15%, which is only approximately half of the full saturation. 

This implies that the model is only sensitive to the shape of VGM curves near the low-

saturation, high tension range, and not sensitive to the full curve (see θ(ψ) relationship for 

M1 in Figure 3-13). This interpretation means that I can only realistically establish that 

the VGM functions apply to coarse, conglomeratic sediment at low saturation levels. 

Future efforts should be focused on making θ and ψ measurements at high saturation 

levels. This may be difficult with in situ tests due the high conductivity nature of these 

types of material, but may be reached through laboratory tests or high resolution 

measurements made during sediment drainage, such as during rapid drops in the water 

table caused by either natural conditions (e.g., changes in river stage) or artificial forcing 

(e.g., pumping). Unsaturated flow measurements at high saturation can be used to further 

constrain the shapes of θ(ψ) and K(ψ) curves and will likely further reduce parameter 

uncertainty, specifically parameters that control the curves near high saturation (i.e., θS 

and KS). Constraining the full θ(ψ) and K(ψ) curves will likely improve models and aid in 

investigations involving water table elevation changes, inundation studies with overbank 

flooding, and canal or pond leakage. 
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A few additional areas where future work could be beneficial, which I will list 

here but not go into detail, include: making θ and ψ measurements in closer proximity so 

that θ(ψ) relationships can be established directly; performing a similar test in a 

homogeneous soil profile (i.e., one material type) in order to reduce uncertainty; making 

repeated measurements in the same material under identical conditions, but at different 

spatial locations, to establish the level and effect of heterogeneity within a single coarse 

sediment layer (i.e., effect of cobble distribution); and identifying and correcting the error 

in the GPR data so that Δtbndry data can be used to constrain the 2D θ distribution. These 

provide only a few examples of future work but numerous other experiments could be 

derived from the work presented in this dissertation. 
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