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Abstract 
Airborne lidar provides an effective platform for collecting 
elevation data. However, the accuracy of lidar-derived digital 
elevation models (DEMs) can be adversely affected by natural 
conditions as well as methods used to process the data. Using 
a lidar dataset from a mountainous region of southwest Idaho, 
this study extends previous assessments of DEM accuracy 
with a focused investigation of a specific dense, low-height 
shrub species (Ceanothus velutinus). Bare-earth elevations 
were collected using survey-grade CPS and compared to lidar­
derived elevations to assess DF:M accuracy. Results suggest 
that the magnitude of elevation error varied depending on 
morphological characteristics of ceanothus, terrain slope, 
and filtering parameters used to process the lidar data. When 
using optimal filtering parameters, root mean square error 
(RMSE2 ) was largest in areas of ceanothus cover, ranging from 
0.17 to 0.26 m in slopes <25° and 0.28 to 0.37 m in slopes 
?25°. An examination of lidar returns found that ceonothus 
obstructed laser pulse penetration and few returns reached 
the ground surface. In areas of ceanothus cover, we conclude 
that the obstruction of the ground surface contributed to 
filtering errors, which resulted in mislabeled ground returns 
and decreased accuracy in bore-earth DEMs. These results 
have implications for the use of lidar-derived DF:Ms in areas of 
ceonothus throughout western North America, and in ecosys­
tems with similar dense shrub cover. 

Introduction and Background 
Airborne laser scanning, also referred to as lidar (Light 
Detection and _Ranging), is an active remote sensing technol­
ogy capable of collecting detailed three-dimensional in forma­
tion about the Earth 's surface. Small-footprint, d iscrete-return 
systems have the abi lity to penetrate surface vegetation and 
yield multiple returns from the canopy and underlying ter­
rain. The dense collection of elevation data makes lidar an 
attractive data source for the production of high-resolution 
digital elevation models (DEMs) used in many geographic 
information system (G1s] applications. While the vertical accu­
racy of many lidar systems is commonly quoted as ~0.15 m 
(Baltsavias, 1999). such accuracy is typically only achievable 
under the most ideal circumstances (Hodgson and Bresnahan, 
2004). Several studies (Reutebuch et al., 2003; Hodgson 
and Bresnahan, 2004; Su and Bork, 2006; Raber et al. , 2007; 
Bater and Coops, 2009; Spaete et al., 2011) have analyzed the 
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accuracy of lidar-derived DEMs and found natural conditions 
such as land -cover and terrain slope, as well as lidar poin t 
processing, to be significant influential factors on accuracy. 

Previous studies investigating the influence of land-cover 
(Hodgson et al. , 2003; Su and Bork, 2006) have categorized 
vegetation according to similar characteristics (e.g., low grass, 
h igh grass, shrub, coniferous, deciduous, etc.], which provide 
generalized error predictions, but may overlook unique inter­
actions between the laser beam and a particular species of 
vegetation. Analyzing error within specific types of vegetation 
is necessary to understand and quantify the accuracy of lidar­
derived ground surfaces in semiarid mountainous ecosystems, 
where dense, broadleaf shrubs coincide with sparse shrub­
steppe and mixed-forest communities. 

Morphological characteristics of vegetation such as 
ceanothus (Ceanothus velutinus) present unique challenges 
for the accurate generation of DEMs using lidar data. Few 
openings in the canopy are large enough for lidar pulses 
(~0.20m diameter ) to pass through and the oval-shaped, waxy 
texture of the leaves (Figure 1) highly reflect and attenuate 
laser beam irradiance. As a result, the dense stand characteris­
t ics and leaf orientation of ceanothus can prevent lidar pulses 
from reaching the ground surface, which potentially leads to 
mistakenly-labeled ground returns and subsequent error in 
DEM elevations . Low-height vegetation can also be problematic 
because of the small elevation differences between the top of 
the vegetation and underlying ground surface. Two lidar ech­
oes can only be discriminated if their distance is larger than 
half of the p ulse length (Beraldin, 2010), which is commonly 
on the order of 3 to 6ns or 1 to 2 m (Liu, 2008). As a conse­
quence, the reflected energy of a pulse from the vegetation 
becomes comingled with the reflected energy from the ground 
surface, and the system is unable to discern more than one 
return in short vegetation (Schmid et al., 2011). 

A well-documented characteristic of observed eleva­
tion error in lidar data is the relationship with terrain slope 
(Maling 1989). As slope increases, "apparent" error may 
also increase due to horizontal error in the lidar observation . 
Spaete et al. (2011) examined the effects of slope and vegeta­
tion on the accuracy of a lidar-derived DEM and calculated 
potential vertical error (PYE) using the average slope for each 
of their vegetation categories. They found a low PVE (0.026-
0.037 m) in slopes <10° and a higher PYE (0.075 to 0.12 m) in 
slopes >10°. Root mean square error (RMSE2 ) values for slopes 
>10° were roughly twice than those for slopes <10°, suggest­
ing that PYE likely contributed to the overall RMSE2 • Hodgson 
and Bresnahan (2004) and Su and Bork (2006), respectively, 
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Figure 1. Photograph of Ceanothus velutinus in the natural envi ronment and magnified inset of ceano­
thus leaves. Inset map identifies states and provinces in the western US and Canada where ceanothus 
can be found. 

found similar results, with RMSE2 on slopes >25° twice those 
found on relatively flat areas and RMSE2 of slopes > 10° twice 
those found on slopes <2°. 

In nearly all lidar applications, height-fi ltering of the 
30 point cloud is a necessary process to determine which 
lidar returns are from the ground surface and which are 
from non-ground features. Classifying the lidar data is a 
crit ical step for DEM generation, but the development of 
methods to accurately separate returns has proven to be 
difficult. A common assumption of many height-filteri ng 
algorithms is that the lowest return in a specified neighbor­
hood represents the ground surface (Meng et al. , 2010). 
This method can be problematic in areas of complex 
vegetation and varying topography where the lowest return 
may not truly represent the ground surface. Many fi lter-
ing algorithms have been proposed with none performing 
equally well for all landscapes (Forlani and Nardinocchi, 
2007). Thus, an understanding of the fi ltering method used 
and its ability to accurately separate returns within specific 
vegetation and varying terrain is necessary for a viable DEM 
accuracy assessment. Several studies (Glenn et al. , 2 011 ; 
Mitchell et al., 2011; Sankey and Bond, 2011; Spaete et al., 
2011) have used the same height-filtering method as imple­
mented in this research determining optimal parameters 
based on study-specific accuracy. 

Al though previous studies have examined the accuracy 
of lidar-derived DEMs across varying terrain and land cover 
(Reutebuch et al., 2003; Hodgson and Bresnahan, 2004; Bater 
and Coops, 2009; Spaete et al., 2011). relatively few have 
focused on quantifying the error for an individual species of 
vegetation (Su and Bork, 2006). Furthermore, little research 
has investigated the effects in semiarid mountainous land­
scapes where complex topography (slopes >25°) and dense, 
low-height shrubs are abundant. Our study investigated 
the influence of ceanothus (Ceanothus ve/utinus). a native 
broadleaf evergreen shrub, on the accuracy of a lidar-derived 
DEM. With populations of ceanothus found in several moun­
tainous ecosystems throughout the western US and Can ada 
(Figure 1). such an investigation has important implications 
for lidar applications at a regional scale. This investigation 
may also hold relevance for ecosystems where similar but 
unrelated species of vegetation exist and interact with lidar 
in much the same manner. The objectives of this study were 
to: (a) determine if ceanothus introduces elevation error in 
derived DEMs, (bl quantify the vertical accuracy for derived 
OEMS within combinations of ceanothus cover and terrain 
slope, (cl explore the influence of filtering parameters on 
DEM accuracy, and (d) determine lidar pulse penetration by 
analyzing the vertical distribution of returns within ceano­
thus canopy. 
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Methods 
Study Area 
This study was conducted in the Dry Creek Experimental 
Watershed (DCEW) located approximately 16km northeast of 
the city of Boise in the semiarid region of southwest Idaho 
(Figure 2). Roughly 27 km' in area, DCEW contains complex 
mountainous and foothills topography. The terrain is highly 
variable with an average slope of ~14°· characterized by steep 
slopes on both the north- and south-facing aspects, converging 
in a narrow valley-bottom (McNamara et al., 2005). Elevations 
range from 1,000m at the southern outlet of Dry Creek to 
2,100m at the northern headwaters (Aishlin et al., 2011; 
McNamara et al., 2005). Lower regions of the watershed are 
classified as steppe summer dry climate (annual precipitation 
~37 cm); while the upper portion of the watershed is classified 
as moist continental climate with dry summers (annual pre­
cipitation ~57 cm). Vegetation varies with elevation, geology, 
microclimate, soil type, and topography. At lower elevations, 
grasses and shrubs dominate, with cottonwoods (Populus 
deltoid] and ponderosa pine (Pin us ponderosa] lining the flu­
vial channels. Upper elevations are dominated by ponderosa 
pine and Douglas-fir (Pseudotsuga menziesii) with patches of 
lodgepole pine (Pinus contorta] and aspen (Populus tremu­
loides). Middle elevations range from grasses and shrubs to 
open forest communities, functioning as an ecotonal zone 
between the sagebrush- (Artemisia spp.) and grass-dominated 
lowlands and more densely forested uplands (Shallcross, 
2011). 

Ceanothus distribution and terrain slope were both 
considered when selecting a suitable study area. Terrain 
slope was analyzed for the entire watershed, and categorized 
using a lidar-derived slope map. Qualitative, pre-survey 
analysis identified probable areas of ceanothus within the 
mid- to upper-watershed (~1500-2000m in elevation) using a 
combination of aerial imagery (National Agriculture Imagery 
Program, 2009) and a lidar-derived vegetation-height raster. 
Field-collection was then focused within the study area, and 
specific sampling areas were randomly selected in the field 
(Figure 2). 

Target Species: Ceanothus velutlnus 
This study assumed that ceanothus in our study area exhib­
ited negligible change in the time between the lidar data 
acquisition (November 2007) and the field data collection 
(June 2011). Ceanothus is a slow-growing species, with 
population growth in similar environments following a sig­
moid curve, reaching an equilibrium growth stage between 
the ages of 10 to 15 years (Zavitkovski and Newton, 1968). 
Limited samples of shrub age estimates at the study area using 
annual growth rings indicated that the sampled populations 
of ceanothus were likely within the equilibrium growth stage 
and no recorded history of fires have occurred in the study 
area within the last century. Ceanothus is also classified as an 
evergreen shrub, so it maintains its leaves throughout the year 
indicating that minimal differences would be found due to 
seasonal changes. 

Lldar Data Acquisition 
Small-footprint, discrete-return lidar data were acquired 
during November 2007 for the entire DCEW as part of a larger 
collection of the Owyhee Uplands. Data were collected 
using a Leica ALS50 Phase II laser sensor (Leica Geosystems, 
Heerbrugg, Switzerland), mounted in a Cessna Caravan 208B 
flown approximately 900m above ground level (AGL). The sen­
sor utilizes a scanning mechanism which was set to a maxi­
mum scan angle of ±14° off nadir and capable of collecting 

Study Area 

0 375 750 

~ Study plot location 

Terrain slope 

1,500 m 

Figure 2. The location of Dry Creek Experimental 
Watershed (DCEw) in southwest Idaho, and a detailed 
map of the study area indicating the highly variable 
terrain and locations of reference plots. 

up to four returns per laser pulse. The diameter of the laser 
beam when it reaches the ground (i.e., footprint) is a function 
of the flying height and beam divergence (0.22 mrad) and was 
calculated as approximately 0.20m. Survey parameters were 
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Figure 3. Lidar data processing diagram using the BCAL l idar Tools. 

set to yield an average point density of 2:4 points/m2• However, 
the �CEW portion of the collection exceeded this baseline with 
average point density ranging from 4.09 to 8.68 points/m'. 
Vendor provided field validation included 504 reference eleva­
tions surveyed on flat asphalt surfaces, returning a fundamen­
tal absolute vertical accuracy of 0.026m RMSE. The horizontal 
accuracy of the data was estimated as -1/3000th of AGL flight 
alt itude, or -0.30m. 

Lidar Data Processing 
Lidar data were processed using Environment for Visualizing 
Images (ENVI) 4.8 software (Exelis Visual Information 
Solutions, Boulder, Colorado) and the Idaho State 
University's publicly available Boise Center Aerospace 
Laboratory (BCAL) lidar Tools' (Streutker and Glenn, 2006) 
(Figure 3). The study area encompassed multiple lidar tiles, 
so a 20 m horizontal buffer was applied to neighboring tiles 
to ensure a seamless representation in further processing. 
The BCAL height-filtering tool was used to classify returns 
as ground or vegetation. Designed for optimal use within 
a shrub-steppe environment, this fil tering algorithm uses 
an iterat ive approach to identify ground returns. An initial 
search neighborhood, whose size is determined by the user 
and referred to as "canopy spacing" in the software tool 
parameters, is passed along the dataset and the lowest return 
in elevation within each neighborhood (canopy spacing) 
is classified as a ground return. A pseudo-ground surface 
is then interpolated from the ground returns using the 
selected interpolation method in the tool parameters. After 
the interpolation, returns that are located below the surface 
are classified as ground, and included in subsequent itera­
tions. After successive iterations, all points in the dataset 
become classified as either ground or non-ground returns, 

with vegetation heights assigned to the non-ground points 
based on their elevation above the pseudo-ground surface. 
Previous studies (Glenn et al., 2011; Spaete et al., 2011) have 
implemented the BCAL height-filtering tool, and determined 
7 m canopy spacing and natural neighbor interpolation 
as effective height-filtering parameters in semiarid shrub­
steppe environments dominated by sagebrush and herba­
ceous vegetation. In contrast, the research presented herein 
was conducted in an ecotonal region that included sparse 
communities of sagebrush and grasslands, intermixed with 
dense populations of ceanothus. For this reason, several 
canopy spacing sizes (3, 5, 7, 9, and llm) were tested using 
the BCAL height-filtering tool to evaluate effectiveness of 
fi ltering and resulting DEM quality. The BCAL lidar tools were 
then used to create 0.5 m spatial resolution raster products 
(maximum vegetation-height and bare-earth) from each of 
the height-fi ltered datasets using a nearest neighbor inter­
polator. The maximum vegetation-height is based on the 
height value assigned during height-filtering, where each 
raster cell assumes the maximum value of all heights within 
each p ixel. Bare-earth elevations are determined by sub­
tracting the height value assigned during filtering from the 
elevation of each return. Each raster cell adopts the mini­
mum elevation within each pixel. This technique increases 
the density of ground returns to help minimize interpola­
tion error. Hereafter, the bare-earth e levation rasters will 
be referred to as DEMs, and subscripts indicate the size of 
canopy spacing used to height-filter the data. For example, 
DEMcss refers to a bare-earth elevation raster generated from 
a dataset that was height filtered using a canopy spacing of 
5 m . The interpolation algorithm and cell resolution used 
with discrete point data influences derived DEM quality. 
Our selection of the nearest neighbor interpolation is based 
on previous research (Lloyd and Atkinson, 2002; Bater and 
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Coops, 2009; Guo et al., 2010), suggesting less complicated 
interpolators (e.g., nearest neighbor) as adequate methods 
with negligible interpolation error when point density is 
high (>1 points/m') . Research has also found that the most 
accurate lidar-derived surfaces were created using grids that 
had a spacing similar to the distribution of original points 
(Smith et al., 2004); thus, DEM resolution is constrained by 
the point density of the dataset (Hengl, 2006). The minimum 
allowable raster grid size (s) was calculated as 0.38 m for our 

dataset (s = ~, where A is the covered area and n is the '{1; 
number of lidar points). substantiating our use of 0.5 m raster 
resolution. 

Field Collection 
In order to evaluate DEM accuracy, an in situ survey was 
conducted in June 2011 to collect accurate ground truth data. 
Bare-earth elevations were surveyed at 94 reference plots, 
with each plot located within a uniform cover type and 
terrain slope (Table 1). Cover types included bare ground, 
where there was no vegetation, and ceanothus, which was 
differentiated into two separate cover categories based on 
two distinctly different morphological patterns. The first 
category, "isolated ceanothus," consisted of a single patch, 
distinguished by clearly defined edges and separated from 
surrounding shrubs. Patch sizes ranged from 5 to 30m, as 
measured at the longest diameter. The second type of ceano­
thus, "continuous ceanothus", consisted of shrubs that had 
grown together to create large(> 100m) continuous "mats" of 
ceanothus cover. Each ceanothus p lot (isolated and continu­
ous) was located in uniformly dense ceanothus, where there 
were no observable canopy gaps larger than the diameter of 
the lidar laser footprint (-0.20 m). Surface slopes were strati­
fied into four classes (class 1 (~14°), class 2 (15 to 19°), class 
3 (20 to 24"). and class 4 (;;:25°)); with reference plots of each 
cover type distributed across the four classes. 

Each reference plot consisted of a single transect designed 
to collect an equal number of sample points at each plot 
(n = 11 per plot). In bare ground and continuous ceanothus, 
transects were aligned parallel to the slope of the terrain and 
had at least a 5 m buffer of the specified cover type. Positional 
coordinates and bare-earth elevations were collected at every 
1 m along a 10 m transect with the first and last measure­
ments used to calculate the average slope of the plot. At 
isolated ceanothus patches, transects were oriented through 
the longest diameter of the patch and x, y, and z coordinates 
were collected at equally spaced points along each transect. 
Additional points were collected around the perimeter of each 
isolated ceanothus patch and the top and bottom points were 
used to calculate the average slope of the plot. At each survey 
point within ceanothus, maximum ceanothus height was 
measured to the nearest 0.05 m. 

A post-processed kinematic survey (Ghilani and Wolf, 
2008) was implemented during field collection using Topcon 
GR3 survey-grade GPS receivers (Topcon Positioning, Inc., 
Livermore, California). Manufacturer provided accuracies' for 
the GPS receivers are sub-centimeter (3 mm +.5 ppm horizon­
tal, 5 mm + .5 ppm vertical) for static collection , and on the 
order of 1 cm (1 cm+ 1 ppm horizontal , 1.5 cm + 1 ppm verti­
cal) for kinematic collection. A local reference station was not 
immediately available within the study area, and thus one 
receiver served as a base station collecting static GPS observa­
tions, while another roving-receiver collected kinematic GPS 
observations at the study p lots. Four separate base locations 
were established in the study area to minimize distances 

' URL: www.topconposilioning.com/legacy/gr-3 

TABLE 1. D ISTRIBUTION OF REFERENCE PLOTS BY S LOPE CLASS AND COVER TYPE 

Number of Re ference Plots 

Slope class Bare ground Isolated 
ceanothus 

Continuous 
ceanothus 

1 (!>14°) 6 13 6 

2 (15-19°) 4 11 6 

3 (20- 24°) 4 15 6 

4 (2'25°) 3 13 7 

Total (94 plots} 17 52 25 

(<600m) between the base and roving-receivers. GPS observa­
tion files collected by the base receiver were post-processed 
using the National Geodetic Survey's (NGS) Online Positioning 
User Service' (OPUS), and corrections were applied to the 
roving-receiver's GPS positions. The overall RMS values docu­
mented in the OPUS solutions were well below the NGS recom­
mended 0.03 m, indicating high-quality solutions. 

Analysis 
Corresponding bare-earth elevations were extracted from each 
lidar-derived DEM at each reference point to assess the effect of 
cover type, slope category, and filtering method on DEM error. 
Observed elevation error was computed by subtracting the 
surveyed elevation from the lidar-derived elevation (ASPRS, 
2004). Negative and positive values were respective indicators 
of underestimation and overestimation of bare-earth eleva­
t ions in the lidar-derived surface. Mean signed error (MSE) and 
root mean square error (RMSE2 ) are two commonly accepted 
statistical m easurements used to assess DEM accuracy. Several 
studies (Hodgson and Bresnahan , 2004; Bater and Coops, 
2009; Guo et al., 2010; Spaete et al., 2011) have used RMSE2 
values based on h igh-grade in situ surveyed elevations to 
determine the accuracy of DEMs across varying land-cover and 
topography. Hodgson and Bresnahan (2004) and Su and Bork 
(2006) included MSE in their analyses to identify the tendency 
for under- or overestimation of elevations relative to specific 
treatment classes. In our study, RMSE2 and MSE values were 
used in a similar manner and calcu lated for each reference 
plot as fo llows: 

where ElevationLiDAII and Elevation11,1.,.,, .. are the lidar-derived 
DEM and reference elevations for the i th sample point, respec­
tively, and n is the number of observations per plot. 

Overall mean RMSE2 was calculated for each of the OEMS 
by averaging all of the respective plot RMSE2 values. RMSE2 
and MSE were then calculated for each cover type and slope 
category by averaging appropriate p lot values for each of the 
DEMs. Analysis of variance (ANOVA) tests were performed to 
compare mean RMSE2 between different OEMS, cover types, 
and slope categories with Tamhane's T2 multiple comparisons 

' URL: http://www.ngs.noaa.gov/OPUS/ 
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Figure 4. An illustration of (a) the elevations surveyed at an isolated ceanothus patch, and {b) the result­
ing DEM interpolated from the points. A lateral view of the derived DEM and lidar point cloud (c) is provided 
to indicate the distribution of points relative to the survey-derived surface (not to scale). 
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post-hoc tests and assumptions of unequal variance (SPSS 
15.0 for Windows, SPSS, Inc.). Further analysis of vari-
ance was performed to determine if any interactions existed 
between cover type, slope, and filtering method. Prior to all 
analysis , the data were examined for normality using the one­
sample Kolmogorov-Smirnov test. When normality assump­
tions were not met, a log transform was applied to obtain a 
normal distribution in the data. Reference plots were catego­
rized by cover type and grouped into subcategories based 
on slope. Thus, each subcategory consisted of plots with 
the same cover type and within the same slope class. Mean 
RMSE2 and MSE values were calculated for each subcategory 
and used to quantify expected accuracies within each of the 
derived DEMs. 

Additional bare-earth OEMS were interpolated for each 
of the isolated ceanothus patches using the field-surveyed 
elevations (Figure 4). The resulting OEMS were used as ground 
reference models to analyze the proximity of returns to the 
ground surface. Although field-survey points had an uneven 
spatial distribution (around the perimeter and along a transect 
through the patch), the ground surface was assumed to have 
little variation from the local trend due to consistent slope 
and aspect at each plot location. It is likely that the points 
around the perimeter of each patch captured the local char­
acteristics of the terrain and a trend surface prediction model 
was chosen for the interpolation method. A tl1ird order poly­
nomial regression was used in the trend model to fit a least­
squares surface to the input points (Childs, 2004). The Spatial 
Analyst extension in ArcMap® 10 (Esri, 2010) was used to 
interpolate the bare-earth OEMS using 0.5 m spatial resolution. 
Hereafter, survey-derived OEMS are annotated using a sub­
script and referred to as DEM,u~, ,. 

The vertical proximity of lidar returns to the ground 
surface was estimated by calculating the elevation differ-
ence between each return and its corresponding DEM,.,v,y· 
All returns were then categorized by their proximity to the 
DEM,"~'Y elevations using 0.15 m vertical distance intervals. 
The sum and cumulative percentage of all returns were calcu­
lated for each vertical distance category. 

Lidar returns that were classified as "ground" during 
height-filtering, and located within the extent of ceano­
thus patches, were examined to determine their proximity 
to DEM,u~,y elevations using the same method described 
above. If the ground-classified returns (GCRs) originated 
from the "true" ground surface, small elevation differ­
ences between the lidar-derived DEM and DEM,um would 
be expected. To test this assumption, differences between 
lidar-derived and DEM'"""" elevations were analyzed at 
specific GCR locations . 

Results and Discussion 
Elevation Error: Cover Type 
Mean plot RMSE2 varied by land-cover type and exhibited 
different trends depending on the DEM. A NOVA tests indicated 
significantly different (p < 0.05) RMSE2 values among cover 
types for DEMs derived from smaller canopy spacing (DEMcs, , 
DEMcss• DEMcs,), while RMSE2 differences among DEMs 
derived from larger canopy spacing (DEMcss and DEMcsul 
were not statistically significant (p > 0.05). Post-hoc multiple 
comparisons also indicated significant differences (p < 0.05) 
among all three cover types in DEMcs, and DEMcss• with the 
lowest errors observed in bare ground; roughly doubling and 
tripling in isolated and continuous ceanothus, respectively 
(Figure 5). DEMcs, followed a similar trend, but the differ­
ences between RMSE2 in isolated ceanothus and bare ground 
were not statistically significant (p > 0.05). Mean signed 
error (MSE) within each cover type appeared to decrease as 
the size of canopy spacing used to derive the DEM increased. 
OEMS with smaller canopy spacing (DEMcs, , DEMcss• DEMcs,l 
appeared to overestimate (positive MSE) bare-earth eleva­
tions in bare ground and isolated ceanothus cover type, 
while DEMs with larger canopy spacing (DEMcss and DEMcs11l 
appeared to underestimate (negative MSE) bare-earth eleva­
tions (Figure 5). In the continuous ceanothus cover type, all 
of the derived DEMs were observed to overestimate bare-earth 
elevations. 
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Figure 5. (a) Graph of RMSE, for each of t he derived OEMS categorized by cover 
type, and (b) Graph of MSE for each of the derived OEMS categorized by cover 
type. Error bars represent the standard error of the mean. 

The size of canopy spacing used in the BCAL height­
filtering tool influenced DEM accuracy with varying effects 
for each of the cover types. Since canopy spacing represents 
the size of the initial search neighborhood, a smaller search 
area is more likely to detect small changes in elevation, 
preserve ridges and valleys, and return a more accurate 
representation of the terrain. Results from the bare ground 
cover type support this assumption, as OEMS derived from 
smaller canopy spacing (DEMcs,• DEMcs,, and DEMcs,l 
had smaller elevation error than those derived from larger 
canopy spacing (DEMcs• and DEMc5 , 1) (Figure 5). In the iso­
lated ceanothus cover type, the largest elevation errors were 
found in DEMs derived from both the largest (DEMcs,, l and 
smallest (DEMcs,l canopy spacing (Figure 5). When the size 
of canopy spacing is larger than the size of a patch, a ground 
return from outside the patch may be identified as the "low­
est" return within the search neighborhood. However, the 
larger search area results in a sparse distribution of ground 
returns, leading to an over-generalized interpolation of the 
bare-earth surface. On the contrary, when the size of canopy 
spacing is smaller than the size of a patch, it is possible for 
the search neighborhood to be confined within the ceano­
thus patch. This becomes problematic if lidar pulses fail to 
penetrate through the canopy and the "lowest" return is not 
from the ground. Subsequently mislabeled ground returns 

can lead to overestimated bare-earth elevations, as evidenced 
by the results of DEMcss (Figure 5). We believe this assump­
tion is transferrable to the continuous ceanothus cover type, 
where consistent overestimations of bare-earth elevations 
were found in all of the DEMs (Figure 5). The lack of open 
areas within the canopy coupled with canopy spacing sizes 
smaller than the sampled ceanothus likely led to mislabeled 
ground returns. 

Elevation Error: Terrain Slope 
Mean RMSE2 and MSE values were used to examine the influ­
ence of terrain slope on the accuracy of bare-earth elevations 
for each of the derived DEMs. Post-hoc comparisons indicate 
significant differences in mean RMSE2 among slope classes 
for DEMcs,, DEMcs,, and DEMcs,· In particular, significant 
differences between class 1 (~14°) and class 4 (~25°) were 
found in each of the DEMs. Mean RMSEz increased -0.17 m 
from the lowest slope class to the highest for DEMcs, and 
increased -0.10 m for DEMcs, and DEMcs, (Figure 6). Results 
for the OEMS derived from larger canopy spacing (DEMcs, and 
DEMc511) revealed a different trend. Although the differences 
were not statistically significant (p < 0.05), smaller errors 
were observed in the h ighest slope class compared to the 
lowest. 
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Figure 6. (a) Graph of RMSE2 for each of the derived DEMS categorized by slope 
category, and (b) Graph of MSE for each of the derived DEMS categorized by slope 
category. Error bars represent the standard error of the mean. 

Over- and underestimations of bare-earth elevations 
were found in each of the slope classes (Figure 6). In slope 
class 1 (S:14°), DEMs using smaller canopy spacing (DEMcs, 
and DEMcs,l appeared to overestimate bare-earth elevations, 
while DEMs with larger canopy spacing (DEMcs,, DEMcss• and 
DEMc5 11 ) had a tendency to underestimate elevations. As ter­
rain slope increased (slope classes 2, 3, and 4). the magnitude 
of overestimations appeared to increase, while the magnitude 
of underestimations appeared to decrease. The largest over­
all underestimation of bare-earth elevations was observed in 
slope class 1 for DEMcs11 (- 0 .534 m) and the largest overesti­
mation was observed in slope class 4 using DEMcs, (0.381 m). 

A two-way ANOVA found the interaction between cover 
type and slope as not significant (p = 0.765), indicating that 
the factors were additive rather than multiplicative. The 
increased elevation errors at steep slopes are possibly due to 
error in the horizontal location of the lidar points (Maling, 
1989; Hodgson and Bresnahan, 2004; Spaete et al., 2011). 
Potential vertical error (PVE) due to lidar horizontal error was 
calculated for each p lot using a horizontal displacement equal 
to the estimated 0.30 m horizontal accuracy (Spaete et al., 
2011). Plots were then stratified by slope class and average 

PVE was calculated . PVE ranged from 0.043 m in the lowest 
slope class to 0.156 m in the highest. Although maximum PVE 
can only be assumed when the horizontal displacement is 
parallel to the surface slope, the increased PVE at h igh slopes 
may have contributed to the observed elevation errors. 

Quantifying DEM Accuracy 
The variability in DEM error made it unreasonable to make a 
generalized quantification of DEM accuracy without consider­
ing all of the potential factors. For example, an area where 
isolated ceanothus was present and the terrain slope was 
~15°, estimated accuracy for DEMcs, was ~0.20 m (RMSEzl­
When data for the same area were processed using 11 m 
canopy spacing, the predicted accuracy was considerably 
higher (0.41 m RMSE2). Thus, r eference plots were grouped by 
cover type and within those groupings, differentiated by slope 
class. DEM accuracy (mean RMSEz and MSE) was calculated 
for each combination of cover type and slope class (Table 2). 
The RMSEz may be used as an expected level of accuracy and 
the MSE indicates the tendency for over- or u nderestimation of 
bare-earth elevations. 
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T ABLE 2 . ESTIMATED ACCURACIES (RMSE, (M) AND MSE (M)) FOR EACH OF THE L IDAR-DERIVED OEMS BASED ON A D IRECT DOMPARISON BETWEEN DEM ELEVATIONS 

AND SURVEYED ELEVATIONS FOR EACH COVER TYPE AND S LOPE CLASS 

DEMCS, DE~ ,, DEMCS, DEMCS, DEMCSl1 

Cover type Slope class RMSE, MSE RMSE, MSE RMSE, MSE RMSE, MSE RMSE, MSE 

1 (S 14°) 0.126 0.120 0.106 0.085 0.186 -0.043 0.253 -0.150 0 .605 -0.544 

2 (15°-19°) 0 .118 0.094 0 .103 0 .073 0.106 -0.002 0.221 - 0.136 0 .235 -0.199 
Bare ground 

3 (20°-24°) 0.128 0.096 0 .102 0.057 0.136 - 0.010 0.209 - 0.112 0 .227 -0.141 

4 (;:;: 25°) 0.212 0.184 0 .200 0.167 0.240 0.211 0.209 0 .086 0 .197 0 .097 

1 (S 14°) 0.207 0.176 0.190 0.014 0.222 -0.129 0.426 -0.349 0.802 -0.765 

Isolated 2 (15°-19°) 0.342 0.307 0 .208 0.117 0.201 0.052 0.211 -0.016 0.415 -0.162 

ceanothus 3 (20°-24°) 0.331 0.300 0 .178 0.088 0.1 70 0.016 0.250 -0.081 0 .285 -0.038 

4 (;:;: 25°) 0.385 0.343 0 .274 0.155 0.278 0.109 0.257 -0.031 0 .332 -0.144 

1 [S 14°) 0.433 0.419 0.329 0.313 0.205 0.170 0.256 0.129 0.193 -0.025 

Continuous 2 (15°-19°) 0.391 0.368 0.301 0.274 0.259 0.236 0.213 0.185 0.207 0.124 

ceanothus 3 (20°- 24°) 0 .492 0.471 0.324 0.295 0.260 0.210 0.300 0.222 0.299 0.135 

4 (;:;: 25°) 0.552 0.527 0.429 0.394 0.374 0.341 0.300 0.234 0.264 0.219 

Distribution of Lidar Returns in Ceanothus Canopy 
Lidar returns within isolated ceanothus patches were exam­
ined to determine their proximity to the DEM,un,,velevations. 
It was hypothesized that returns with small differences in 
elevation (<0 .15 m) from the DEM,.,., had a high poten-
tial of being ground returns. Results found only 5 of the 
total (15,703) returns with elevations that were equal to the 
DEM,..v,y elevations and 149 returns with elevation difference 
:,;o.15 m (Table 3). The finding ofa small percentage of returns 
with elevations close to DEM,.m, elevations supports the 
assumption that few laser pulses can penetrate through the 
ceanothus canopy and return accurate bare-earth elevations. 
It is also notable that of the 149 returns with elevation dif­
ferences <0.15 m, over 100 of the returns were found within 
a single ceanothus patch. Further examination revealed that 
nearly all of these returns were located at the edge of the 
patch, and we speculate that they originated from the ground 
surface outside of the patch. We conclude that within the 
majority of patches there were no lidar returns that originated 
from the ground surface. 

Relationship Between GCRs and Elevation Error 
GCRs were investigated using the same criteria men-
tioned above to determine their proximity to the ground 
surface, and only ten GCRs were found within a 0 .15 m 
of the DEM,

0 
,.,y elevations (Table 3). Further explora-

tion of the GCRs exposed substantial deviations from the 
DEM,.,v,, elevations. Over half of the GCRs had eleva-
tions >0.30 m higher than the DEM,.,.., elevations (Table 
3). These discrepancies are intriguing and suggest that 
returns were likely mislabeled during the height-filtering 
process. Furthermore, a strong tendency was found for 
overestimation of lidar-derived elevations at specific GCR 
locations. Previous research (Raber et al. , 2007; Hodgson 
and Bresnahan, 2004) determined that a higher density 
of ground returns correlate with greater OEM accuracy. 
Undoubtedly, those conclusions were based on the assump­
tion that the ground returns were accurate representa-
tions of bare-earth elevations. Our study concludes that 
the h igh elevation errors at GCR locations are attributed 
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to mislabeled returns, which originated from within the 
ceanothus canopy. Therefore, the higher density of misla­
beled ground returns would lead to a greater overestimation 
of the ground surface. 

An optional parameter in the BCAL height-fi ltering tool 
allows for the user to input a ground threshold value that 
consequently identifies more GCRs. Additional height-filtering 
was performed using a 0 .15 m threshold value, resulting in all 
points within 0, 15 m of the original identified ground surface 
to be included in the ground classification. Although the 
number of GCRs increased to 264, the proximity of the returns 
to the DEM'"'"'' elevations followed a similar distribution as 
the method where no threshold was used, Roughly half of the 
GCRs (130) had elevations >0.30 m higher than the DEM,.,.,, 
elevations. Both methods provided similar elevation errors, 
indicating that the increased number of ground returns using 
the threshold were likely subject to the same mislabeling error 
and failed to provide a more accurate DEM. 

Impact on Estimated Ceanothus Heights 
A direct point-based comparison between the 535 field­
measured ceanothus heights and corresponding lidar-derived 
heights revealed an accuracy of 0.28 m (RMSEzl. Although 
the error appears to be relatively small, 0.28 m represents 
a substantial fraction (-one-third) of the average height of 
ceanothus (0.85 m). These results are consistent with other 
studies that have found similar height errors using lidar data 
in low-height vegetation such as sagebrush (Glenn et al,, 
2011; Mitchell et al. , 2011). Lidar also had a slight overall 
tendency to underestimate heights (MSE = -0,026 ml, but 
examination of the specific errors showed a wide range 
(-0 .93 to 0,63 ml of both over- and under-predicted heights . 
Furthermore, errors were variable even within a single 
ceanothus patch, and simple linear regression showed OEM 
elevation error as a significant predictor variable (p < 0.001, 
R2 = 0.434) for ceanothus height error. Where ground eleva­
tions were overestimated, ceanothus heights were underes ti­
mated, and vice versa. This highlights the importance of an 
accurate bare-earth DEM as errors will propagate into further 
lidar-derived products. 
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T ABLE 3. VERTICAL D ISTRIBUTION OF A LL L IOAR R ETURNS AND ONLY GROUND CLASSIFIED RETURNS ( GCRs) WITHIN I SOLATED CEANOTHUS PATCHES 

Height above 
DEM'"'""' elevations (m) No. of 

Returns 

All lidar Returns 

% o f All 
Returns 

Cumulative% 
of Returns 

Ground Classified Returns (GCRs) 

No. o f % of All Cumulative % 
GCRs Returns OfGCRs 

0.00 

0.01 lo 0.15 

0.16 lo 0. 30 

0.31 to 0.45 

0.46 lo 0.60 

0.61 to 0.75 

0.76 lo 0.90 

0.91 to 1.05 

1.06 to 1.20 

1.21 to 1.35 

1.36 lo 1.50 

1.51 to 1.65 

1.66 to 1.80 

1.81 to 1.95 

1.96 to 2.10 

5 

149 

377 

811 

1825 

2708 

3168 

2965 

1999 

1016 

453 

170 

49 

7 

1 

0.03% 

0.95% 

2.40% 

5.16% 

11.62% 

17.25% 

20.17% 

18.88% 

12.73% 

6.47% 

2.88% 

1.08% 

0.31% 

0.04% 

0.01% 

0.03% 

0.98% 

3.38% 

8.55% 

20.17% 

37.41% 

57.59% 

76.4 7% 

89.20% 

95.67% 

98.55% 

99.64% 

99.95% 

99.99% 

100.00% 

0 

10 

23 

14 

9 

8 

3 

3 

1 

3 

n/a 

n/a 

n /a 

n/a 

n /a 

0.00% 

0.06% 

0.15% 

0.09% 

0.06% 

0.05% 

0.02% 

0.02 % 

0.01 % 

0.02% 

n/a 

n/a 

n/a 

n/a 

n/a 

0.00% 

13.51% 

44.59% 

63.51% 

75.68% 

86.49% 

90.54% 

94.59% 

95.95% 

100.00% 

n/a 

n/a 

n/a 

n/a 

n/a 

Implications of Height-filtering 
The height-filtering method is another potential source of error 
as highly varying terrain and low vegetation are challenging for 
automated filtering processes (Sithole and Vosselman, 2004). 
The first iteration of our height-filtering method identifies 
ground returns as the lowest lidar return within a specified 
neighborhood (canopy spacing). In steep sloping terrain, it is 
possible for a return in the vegetation canopy to have a lower 
elevation than a ground return if it is located downslope. The 
resulting mislabeled grow1d returns may have contributed to 
the observed DEM errors in our study. It is emphasized, how­
ever, that an accurately filtered dataset would still lack ground 
returns beneath dense vegetation cover, and the determination 
of bare-earth elevations would be contingent on interpolation 
from neighboring ground returns. 

Conclusions 
Investigating errors in lidar-derived bare-earth DEMs is criti­
cal for understanding the accuracy of lidar and d erived prod­
ucts when applied to studies of the natural environment. 
The research presented here extends previous assessments 
of DEM accuracy by examining errors introduced by a specific 
shrub species in a complex mountainous environment. 
Findings are consistent with other studies (Hodgson et al., 
2003; Hodgson and Bresnahan, 2004) that found signed 
elevation errors were high in the shrub vegetation compared 
with other vegetation. Although the magnitude of errors var­
ied by ceanothus cover type (isolated or continuous), slope, 
and height-fi ltering parameters, we conclude that errors were 
largely attributable to the tend ency of ceanothus to obstruct 
lidar pulse penetration due to its dense stand characteristics 
and leaf structure. Fewer than half of the ground classified 
returns in our study had elevations within 0.30 m of the 
DEM,,,~•Y elevations, suggesting that several of the ground 
classified returns were mislabeled during height-filtering and 
led to e levation errors in derived OEMS. These find ings are 

significant because they not only highlight the importance 
of u nderstanding the filtering process, but also demonstrate 
the difficulty in generating an accurate bare-earth model 
when "true" ground returns are not available in the data-
set due to high density vegetation cover. Therefore, users 
should be aware of potential introduced errors and consider 
the accuracy of lidar-derived OEMS in the context of specific 
vegetation types when applying the models to studies of the 
natural environment. 

The development of improved vegetation filtering meth­
ods continues to be an active area of research with a neces­
sary focus on surfaces with rough terrain and low vegetation 
(Meng 2 010). Briese (2010) acknowledges that a common 
deficiency in many filtering algorithms is that they focus on 
the geometric relationship between points in a local neigh­
borhood and that the bare earth cannot be characterized in 
certain areas by geometric means alone. A new generation of 
full -waveform airborne lidar systems may be able to provide 
radiometric information from the complete backscattered 
waveform to discriminate low vegetation from ground reflec­
tions (Briese, 2010). As an example, Doneus and Briese (2006) 
implemented a pre-filter step to eliminate low vegetation 
based on echo width, which led to a significant improvement 
in DEM quality. 

While this research was demonstrated in a specific 
study location, the findings are applicable and important 
in the larger region due to the wide distribution of ceano­
thus and i ts sub-species in several mountainous ecosys­
tems throughou t the western US and Canada. Furthermore, 
it is reasonable to conclude that unrela ted sp ecies with 
similar characteristics (e.g., broadleaf evergreen shrubs) 
likely interact with lidar in much the same manner. This is 
consistent with conclusions from previous studies in the 
chaparral ecosystem of southern California (Cooke , 2008) 
that attributed elevation errors to the dense vegetation 
which provided few canopy gaps through which the lidar 
pulses could penetrate. 
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