Excited-State Dynamics in DNA-Templated Molecular Dye Aggregates

Jonathan S. Huff,¹ Daniel B. Turner,¹ Olga A. Mass,¹ Matthew S. Barclay,¹ Bernard Yurke,^{1,2} William B. Knowlton,^{1,2} Paul H. Davis,¹ Ryan D. Pensack^{1,*}

¹Micron School of Materials Science & Engineering, and ²Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725 * ryanpensack@boisestate.edu

Acknowledgments

We would like to thank Simon Roy and Lance K. Patton for their work modelling the aggregate structures

2

3

Δ

© 2021 Boise State University

5

[1] J. S. Huff et al., J. Phys. Chem. Lett. **2019**, 10 (10), 2386.

Key Knowledge Gap

How does the number of dyes in the aggregate influence nonradiative decay?

How does dye packing influence nonradiative decay?

7

Immobile DNA Holliday Junction Template

8

Immobile DNA Holliday Junction Template

© 2021 Boise State University

Wavelength (nm)

Excited-state dynamics

- Femtosecond transient absorption (TA) measurements showed all solutions exhibited complicated multiexponential relaxation dynamics.
- Additional TA measurements and global target analysis (GTA) revealed that the adjacent dimer and trimer solutions contain substantial aggregate subpopulations.

Solution	$ au_1(ps)$	$ au_2(ps)$
Monomer	1300	
Adjacent Dimer	40	242
Transverse Dimer	202	
Trimer	30	80
Tetramer	40	

• All aggregate populations exhibit greatly reduced excited-state lifetimes due to increased nonradiative decay rate.

Wavelength (nm)

Excited-state dynamics

- Femtosecond transient absorption (TA) measurements showed all solutions exhibited complicated multiexponential relaxation dynamics.
- Additional TA measurements and global target analysis (GTA) revealed that the adjacent dimer and trimer solutions contain substantial aggregate subpopulations.

Solution	$ au_1(ps)$	$ au_2(ps)$
Monomer	1300	
Adjacent Dimer	40	242
Transverse Dimer	202	
Trimer	30	80
Tetramer	40	

• All aggregate populations exhibit greatly reduced excited-state lifetimes due to increased nonradiative decay rate.

Increasing dye separation and lifetime

10

© 2021 Boise State University