

Atomic Structure									
•	electron proton neutron	9.11 x 10 ⁻³¹ kg 1.67 x 10 ⁻²⁷ kg 1.67 x 10 ⁻²⁷ kg	Atomic Number Symbol	14 Si					
•	Atomic #	= number of protons in the nucleus or atom= of electrons in a neutral species	Atomic Weight	28.08					
•	• Isotope: Determined by number of neutrons in atom								
•	Ion: Charged atom, unequal number of electrons and protons \overline{A}								
•	amu	= $1/12$ mass of ¹² C isotope	$A_{\rm M} =$	$\sum_{i} J_{i_{\mathrm{M}}} A_{i_{\mathrm{M}}}$					
•	Atomic wt	= wt of 6.023 x 10 ²³ molecules or atoms, weighted average of all isotopes							
•	1 amu/atom	= 1 g/mole							
© 2015 Boise State University 5									

 Most elements: Electron configuration not stable. 						
<u>Element</u>	Atomic #	Electron configu	ration			
Hydrogen	1	1s ¹				
Helium	2	1s ² (s	stable)			
Lithium	3	1s ² 2s ¹				
Beryllium	4	1s ² 2s ²				
Boron	5	1s ² 2s ² 2p ¹		Adapted from Table 2.2,		
Carbon	6	$1s^22s^22p^2$		Callister & Rethwisch 9e.		
		····				
Neon	10	1s ² 2s ² 2p ⁶	(stable)			
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹				
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²				
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3	p ¹			
		····				
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3	p ⁶ (sta	able)		
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3	$p^{6}3d^{10}4s^{2}4p^{6}$	(stable)		

	BOISE STATE UNIVER	BITY
Type Ionic	Bond Energy Large!	Comments Nondirectional (ceramics)
Covalent	Variable large-Diamond small-Bismuth	Directional (semiconductors, ceramics polymer chains)
Metallic	Variable large-Tungsten small-Mercury	Nondirectional (metals)
Secondary	smallest	Directional inter-chain (polymer) inter-molecular
© 2015 Boise State University		al an increase of the second second

Microscopy

Optical resolution ~ diffraction limited For higher resolution need higher frequency

- X-Rays? Difficult to focus.
- Electrons
 - wavelengths ca. 3 pm (0.003 nm)
 (Magnification 1,000,000X)
 - Atomic resolution possible
 - Electron beam focused by magnetic lenses.
- Atomic Forces

© 2012 Boise State University

 Sensing atomic interactions between a cantilever and a surface allows for direct correlation of structure and properties

Scanning Tunneling Microscopy

• Developed by Gerd Binnig and Heinrich Rohrer at the IBM Zurich Research Laboratory in 1982.

Binnig

© 2012 Boise State University

Rohrer

- The two shared half of the 1986 Nobel Prize in physics for developing STM.
- STM has fathered a host of new atomic probe techniques: Atomic Force Microscopy, Scanning Tunneling Spectroscopy, Magnetic Force Microscopy, Scanning Acoustic Microscopy, etc.

Basic Principles of STMImage: Image: Image

Atomic Force Microscopy

 Developed by Gerd Binnig, Calvin Quate, and Christoph Gerber in 1986

© 2012 Boise State University

Gerber

- First commercial AFM was introduced in 1989.
- AFM tips can be "functionalized" to probe a variety of physical properties with nanoscale resolution

32

Other Graphene Chemical Sensor Studies

37

Cell Growth for Neural Network

- Culture electrically responsive cells for developing functional engineered neural networks
- PC-12 rat pheochromocytoma cells
- Commonly used to model
 neurons

© 2012 Boise State University

 Differentiate into neuron-like cells

Phase contrast image of PC-12 cells in laminincoated dish. In media with 100ng/ml nerve growth factor.

