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We report a flexible carbon nanotube CNT thin-film transistor TFT fabricated solely by ink-jet 
printing technology. The TFT is top gate configured, consisting of source and drain electrodes, a 
carrier transport layer based on an ultrapure, high-density 1000 CNTs / m 2 CNT thin film, an 
ion-gel gate dielectric layer, and a poly3,4-ethylenedioxythiophene top gate electrode. All the TFT 
elements are ink-jet printed at room temperature on a polyimide substrate without involving any 
photolithography patterning or surface pretreatment steps. This CNT-TFT exhibits a high operating 
frequency of over 5 GHz and an on-off ratio of over 100. Such an all-ink-jet-printed process 
eliminates the need for lithography, vacuum processing, and metallization procedures and thus 
provides a promising technology for low-cost, high-throughput fabrication of large-area high-speed 
flexible electronic circuits on virtually any desired flexible substrate. © 2008 American Institute of 
Physics. DOI: 10.1063/1.3043682 

Printing thin-film transistors TFTs on flexible sub-
strates at room temperature offers a cost-effective way to 
achieve mass production of large-area electronic circuits 
without using special lithography equipment. It is expected 
to provide an enabling technology for many emerging appli-
cations such as flexible displays, radio frequency identifica-
tion RFID tags, electronic papers, and smart skins, just to 
name a few. Printed flexible electronics have been reported 
by using various organic semiconducting polymers.1–3 How-
ever, the carrier mobility of organic semiconducting poly-
mers is still less than 1.5 cm2 /V s,1–3 which limits the 
device operation speed to only a few kilohertz. Carbon nano-
tube CNT, a material with exceptional aspect ratio and 
great mechanical flexibility, has shown great promises as 
an active carrier transport material in making high-speed 
flexible field-effect transistors FETs. 4–12 Extraordinary 
field-effect mobility as high as 79 000 cm 2 /V s was re-
ported in the FETs based on individual CNTs. 5 Due to the 
ultrahigh field-effect mobility, CNT-based flexible FETs are 
capable of achieving high-speed gigahertz operation.13–15 

However, most of the reported FETs were based on CNTs 
grown using chemical vapor deposition CVD,16,17 which 
generally requires an extremely high temperature, typically 
900 ° C.5,16,17 This represents a major obstacle to fabricat-
ing electronic devices on flexible substrates because most 
flexible substrates are unable to survive such a high CVD 
growth temperature. FETs based on solution-processable 
CNT thin films6–12 can be fabricated at room temperature and 
are thus especially suitable for printed electronics on flexible 
substrates. However, the sidewalls of as-produced nanotubes 
are covered by amorphous carbon -C, which is a very 

common carbonaceous impurity.18 Such impurities would 
tremendously restrict the transport of carriers in the formed 
CNT thin films and seriously limit the field-effect mobility of 
the CNT-TFTs.18,19 High field-effect mobility CNT-TFTs can 
be achieved by using ultrapure electronics-grade CNT 
solutions.18 High-speed 300 MHz CNT-FETs have been 
demonstrated by syringe dispensing a tiny droplet of an 
electronics-grade CNT solution on a flexible substrate.20 In 
this paper, we report an all-printed CNT-TFT on a polyimide 
substrate. All the elements of the TFT are fabricated solely 
by using ink-jet printing technology without involving any 
photolithography fabrication steps. An ultrahigh operating 
frequency of over 5 GHz was demonstrated with an on-off 
ratio of over 100. 

The schematic structure of the CNT-TFT is shown in 
Fig. 1a. Figures 1b and 1c show the pictures of the 
CNT-TFT. The TFT is in a top gated configuration. It 
consists of source S and drain D electrodes, a carrier 
transport layer based on an ultrapure, high-density 
1000 CNTs / m 2 CNT thin film, a gate dielectric layer, 
and top gate electrode G. All of these TFT elements were 
printed on a DuPont™ Kapton® FPC polyimide film21 by 
using an Optomec’s M3D Aerosol Jet® printing system. 22 

The S and D electrodes were first printed on the Kapton® 
FPC polyimide film using UTDAg silver nanoink from 
UT-Dots,23 followed by the thermal annealing at 130 ° C for 
30 min. The width of the S and D electrodes was 50 m, 
and the separation between the S and D electrodes, i.e., chan-
nel length l, is 100  m. An active carrier transport layer 
was then printed using an ultrapure, electronic grade CNT 
solution CJ-28 from Brewer Science, Inc. In a separate ex-
periment, it was verified that a high-density CNT thin film 
1000 CNTs / m 2 with a low content of amorphous car-aElectronic mail: xuejun_lu@uml.edu. 

APPLIED PHYSICS LETTERS 93, 243301 2008 

0003-6951/2008/9324/243301/3/$23.00 © 2008 American Institute of Physics 93, 243301-1 

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp 

http://dx.doi.org/10.1063/1.3043682
http://dx.doi.org/10.1063/1.3043682
http://dx.doi.org/10.1063/1.3043682
http://apl.aip.org/apl/copyright.jsp
mailto:xuejun_lu@uml.edu


bon -C can be obtained.20 Multiple printing of the 
CNT solution between the S and D electrodes was per-
formed to achieve a uniform CNT film with a S-D resistance 
of 200 k. The CNT film was then air dried at room 
temperature. A thin layer of ion gel was then printed on 
top of the CNT film as the gate dielectric.23 The TFT was 
finished by printing a conducting polymer poly3,4-
ethylenedioxythiophene layer as the top gate electrode.3 No 
postannealing or passivation step was performed after the 
printing of the TFT. 

Figure 2 shows the S-D I-V characteristics IDS versus 
VDS of the CNT-TFT at different gate voltages VG. The 
gate voltages varied from −1.0 to +1.5 V. At the same S-D 
voltage VDS, lower S-D currents IDS were observed as the 
gate voltage increased from negative to positive voltages. 
This indicates that the CNT network in this TFT is a p-type 
carrier hole transport layer.19,20 At the S-D voltage VDS of 
1.8 V, a high S-D current IDS of 221 A and a low IDS of 

1.6 A were obtained at the gate voltages of −1.0 and 
+1.5 V, respectively. The S-D current IDS on-off ratio was 
138. The large on-off ratio reveals a high content of the 
semiconducting type of CNTs in the CNT active layer. The 
gate-source leakage current IGS was measured to be in the 
picoampere range. The low gate switching voltages of −1.0 
and +1.5 V and the low leakage gate current indicate that 
the ion-gel layer is an effective gate dielectric.23 Note that 
the I-V trace at zero gate bias is roughly linear with a S-D 
resistance of 72 k. This is smaller than the initial 200 k 
S-D resistance, indicating possible negative charges trapped 
in the ion-gel gate dielectric layer and functions effectively 
as a negative gate bias. 

High-speed device operation was characterized by using 
a transimpedance amplifier,14,20 as illustrated in Fig. 3a, 
where R 120  and ZL 50  are, respectively, the 
printed resistor and effective load of a microstrip transmis-
sion line with a characteristic impedance Z0 designed at 
50 . Due to the CNT-TFT’s high input impedance and low 
output impedance, this circuit configuration can effectively 
function as a transimpedance amplifier.24 The cutoff fre-
quency is predominantly determined by the transit time 
across the CNT channel length.24 The small signal response 
of this voltage buffer stage is shown in Fig. 3b. The pink 
trace is the 5 GHz input signal Vin biased at −1.0 V using 
a standard bias tee. The green trace is the corresponding 
output signal Vout. The peak-to-peak values of the input and 
output signals were, respectively, 210 and 10 mV, indicating 
a transimpedance gain of 0.05. The low gain is due to the 
low resistance of the printed resistor. By optimizing the re-
sistance of the printed resistor, a high transimpedance gain 
can be expected. Note that the output signal could follow the 
input signal without any waveform distortion, indicating ex-
cellent linearity. In the previous work,20 we demonstrated a 
syringe-dispensed printable CNT-TFT with an operating 
speed of over 312 MHz by using external resistor and load. 
The operation speed of the circuit was not limited by the 
CNT-TFT but rather by the long wires from the probes to the 
external circuit board. By printing the integrated CNT-TFT 
with input and load transmission lines, a considerable opera-
tion speed improvement was achieved, indicating the high-
speed property of CNT-based flexible transistors. 

In this paper, we demonstrated an all-ink-jet-printed 
CNT-TFT on a DuPont® Kapton® FPC polyimide film by 

FIG. 1. Color online Printed CNT-TFT on a DuPont® Kapton® FPC 
polyimide film: a schematic structure cross-section view, b and c 
picture of the CNT-TFT, b circuit, and c optical microphotography of the 
CNT-TFT top view. The CNT-TFT is in a top-gated configuration. The 
channel width and length are 200 and 100 m, respectively. 

FIG. 2. Color online S-D I-V characteristics IDS vs VDS of the fabricated 
CNT-TFT at different gate voltages VG. 
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using an Optomec’s M3D ® Aerosol Jet printing system. A 
high-speed 5 GHz TFT with a large high on-off ratio of 
over 100 was obtained. The use of this ultrapure CNT solu-
tion enabled the ink-jet printing compatibility of CNTs with 
room-temperature fabrication of electronic devices on flex-
ible substrates, while additional lithography patterning, etch-
ing, and vacuum metallization upon the formed CNT thin 
film were no longer needed. The preliminary printed CNT-
TFT and the initial high-speed performance demonstration 
indicate the feasibility of the CNT-based all-printed flexible 
high-speed TFT technology. Such ink-jet printing of flexible 
TFTs at room temperature would enable mass fabrication of 
large-area electronic circuits on virtually any desired flexible 
substrate at low cost and high throughput for many emerging 

applications such as flexible displays, RFID tags, electronic 
papers, and smart skins. 
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FIG. 3. Color online Demonstration of high-speed modulation of the fab-
ricated CNT-TFT: a schematic circuit diagram and b small signal re-
sponse of the voltage follower at 5 GHz. 
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