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These programmes are designed to calculate the dielectric constant of a microwave resonator from its 
geometry, the geometry of the test cavity, the dielectric constants of the surroundings, and the resonant 
frequency. There are essentially two geometries accounted for in this software, that of Hakki-Coleman 
and that of Itoh-Rudokas. 

HakCol.EXE 

The Hakki-Coleman geometry, sometimes called the post-resonator method, is the simpler (and more 
mathematically precise) of the two configurations. In this, a cylindrical resonator is sandwiched between 
two conducting plates (typically of copper) of mathematically infinite proportions (this means that they 
must be sufficiently larger than the resonator so there is no field beyond them). Two probes are then 
inserted on either side of the resonator between the plates. These probes are hooked horizontally at the 
testing end to set up a magnetic field with force lines in the vertical plane. This magnetic field then 
couples with the test piece to induce the TE 

01 
resonant mode. If the piece is of very high dielectric 

constant, most of its electrical field will remain in the piece (DUT) (it is efficiently reflected into the 
piece at the solid-air interface) so the probes must be placed close enough to couple (always, of course, 
without over-coupling occurring). In this way, frequencies are scanned, and a network analyser is able to 
distinguish the frequency of maximum transmission, which is the resonant frequency. If the test jig is not 
of the correct proportions for the piece, one or more resonant peeks belonging solely to the jig may 
appear and must be distinguished from the TE 

01 
frequency. Once this frequency is known, the dielectric 

constant can be calculated with the additional information of resonator diameter and thickness. The main 
equations which are involved were first derived by Hakki and Coleman in 1970 and are transcendental in 
nature (they must be solved by an iterative method which would be very time-consuming without 
computer help). 

If one assumes the resonator is isotropic, has a dielectric constant of e 
r
, permeability of µ

o
, thickness t, 

and diameter d , then for a TE 
0nl 

mode: 

(1) 

where J 
0
(a) and J 

1
(a) are Bessel functions of the first kind of orders 0 and 1, respectively. K 

0
( b ) and 

K 
1
(b) are modified Bessel functions of the third kind (also called modified Hankel functions) of order 0 

and 1, respectively. The values of a and b are dependent upon geometry, free-space resonant wavelength 

( l ), and the dielectric constant of the resonator ( e 
r 
), as shown below: 

(2) 

(3) 
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where d is the diameter of the resonator, c is the speed of light, and n 
p 

is the phase velocity in the 

structure so that 

(4) 

and l is the number of longitudinal variations of the field along the axis. Combining (2) and (4), we 
obtain: 

Then, for the TE
01d mode (n = 1, l = 1), (3) can be re-written as: 

(5) 

The characteristic equation of (1) is therefore clearly transcendental and requires a graphical or iterative 
approach. 

Hakki and Coleman provided several graphs which related a to b. A simple curve fit to their data is 

sufficient as a starting point for the iteration. In fact, a ninth-order polynomial fit is used to calculate e 
r 

to 

a good approximation. First b is calculated from (5), that value is then plugged into (2) along with the 

approximate e 
r 

to calculate a. Both a and b are then checked by (1). If the equation is invalid with those 

values, e 
r 

is adjusted accordingly, a is re-calculated, and the process is repeated until (1) is satisfied. It is 

worth noting here that there is a slight error in Hakki and Coleman’s paper in that K 
0 

and K 
1 

are called 

Bessel functions of the second kind. They are, in fact, modified Bessel functions of the third kind, as 
stated above. 

ErCalc.EXE 

The algorithm developed to solve the Itoh-Rudokas equations is long and complicated. First, a 
mathematical construct is used to numerically solve for the eigenvalues. In software currently available, a 
curve-fit is used to estimate the ratio of Bessel functions and modified Hankel functions, leading to a 
small but measurable error. The chief advantage of this programme is that all of the various Bessel 
functions are numerically calculated individually for an improved accuracy. 

Once the eigenvalues are known, the dielectric constant can be calculated, and a new resonant frequency 
obtained from the variational method. The dielectric constant is then adjusted appropriately until the 
calculated frequency is equal to the experimental frequency. 

Values of e 
r 

were calculated from the resonant frequency and the dimensions of the sample and cavity

using the appropriate system of transcendental equations published by Itoh and Rudokas. No account is 
taken of the conductivity of the cavity walls which are assumed to be very distant from the resonator; 
nevertheless, the calculation is not trivial. The software developed here is based on the model suggested 
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by Kajfez shown in the figure below. (Although Kajfez refers to this as the Itoh-Rudokas model, in fact 
their model was based on the simpler system of a resonator sitting on a support not in a cavity.) 

Schematic model of the resonant cavity. The side walls have been omitted, as they are of no mathematical 
significance. Region 6 is the resonator; region 1 is the support, and the remaining regions are typically 

air-filled. 

For a high-er material, most of the electrical field is contained within the resonator itself (region 6), and 
very little exists in regions 1 and 2, and even less in regions 3 and 5. To a fair first approximation, then, 
the fields in regions 3 and 5 can be ignored (this approximation is compensated for later on). For the TE 

01d modes the requirement for continuity of fields leads to two simultaneous eigenvalue equations: 

(6) 

(7) 

In (6), J
0 

and J
1 

represent Bessel functions (sometimes called cylindrical functions, hence their 

appropriateness in this cylindrically-symmetrical model) of the first kind of order zero and one, 
respectively; and K 

0 
and K 

1 
are the modified Hankel functions (sometimes called modified Bessel 

functions of the third kind) of the zeroth and first order. 

The radius of the resonator is a, as defined in the figure below. The symbol k represents the radial 
propagation constants in the different regions of the model, which are functions of both frequency and 

dielectric constant; and r is the radial distance from the geometric centre. The arguments of the various 
Bessel functions are the eigenvalues of the system, where k r1 

a is called the eigenvalue of the TE 
0n 

mode, and k r2 
is given by: 
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(8) 

where k 
0 

is called variously the propagation constant, wavenumber, or phase constant of free space, and 

has units of m -1: 

In (7), b is the propagation constant of the resonator, and l is part of the resonant mode description (see 

appendix). For the TE 
01 d mode, l = 0. 

(9) 

The symbols f
1 

and f
2
are called the phase angles and are complex hyperbolic functions of the cavity 

geometry and the propagation constant of the resonator: 

Here, a
1 

and a
2 

are called the attenuation constants above and below the resonator. These constants can 

be calculated directly from the frequency and radius, thus: 

In these equations, e 
r1 

and er 
2 

are the dielectric constants of the material below (the support) and above 

(air) the resonator. Of course, e 
r2 

= 1; but e 
r1 

is more difficult to define as, for instance, a fused quartz 

support has e 
r 
˜ 4 but may be only ˜ 1 / 

5 
the diameter of the simple shape shown in the figure. As an 

approximation, e 
r1 

is generally set equal to unity. The errors this introduces are very small, generally only 

manifest in the hundredths place of the dielectric constant e 
r6

. 

The solution of these simultaneous equations is obtained using an algorithm based on that published by 
Kajfez and Guillon. Dielectric constants calculated in this way have a typical error of ˜ +14.8%. 

An improvement to the model can be made by accounting for the fields in regions 3 and 5. So far the 
model assumes the fields to be zero here, creating a discontinuity in the field distribution on the 
boundaries of these regions. If one chooses instead appropriate electric fields for these regions, a 
continuous distribution can be restored; but the equations necessary do not satisfy the Helmholz wave 
equation, making it impossible to construct a self-consistent magnetic field in these regions. In this case, 
the magnetic fields are simply left to be zero. To compensate for this case, artificial surface electric 
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currents are introduced on the boundaries of regions 3 and 5, as shown in the figure. This technique is 
called a variational method, and the net effect is to lower the dielectric constant for a given resonant 
frequency. Again, in order to establish the correct dielectric constant, an iterative algorithm must be 

invoked which adjusts e 
r6 

until the calculated resonant frequency matches the experimentally measured 

one. The solution is shown as the figure in red at the bottom of the screen. Errors are typically brought 
down to ˜ -5.7% in this way. 

Back 
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