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1 Introduction to Neural Networks

• Some material from peterroelants
• Goal: understand neural networks so they are no longer a black box

In [121]: # do all of the imports here

import numpy # Matrix and vector computation package

import matplotlib.pyplot as plt # Plotting library

from sklearn import datasets

import seaborn as sns

%matplotlib inline

sns.set(style='ticks', palette='Set2')

import pandas as pd

import numpy as np

import math

from __future__ import division

numpy.random.seed(seed=1)

Suppose you are to write some kind of function. You know what inputs it’s going to take (x)
and what kinds of outputs that are expected (y):

1.1
y = f (x)

You find out, however, that your inputs are very complicated data points and your task is to write
a function that can classify those data points into one of several classes. What do you do?

• Option 1: You can write f (x), i.e., a rule-based algorithm, like we always have. Programmers
do this all the time.

• Option 2: You can write a different kind of f (x) that learns the function on its own using
data.

• x = data (i.e., input features)
• y = class label (i.e., output)

What do we mean when we say that a machine learns? Let’s start with an intuitive example:
linear regression.
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first, we need some data (i.e., x and y)

In [122]: x = numpy.random.uniform(0, 1, 20)

def f(x): return x * 2

noise_variance = 0.2 # Variance of the gaussian noise

noise = numpy.random.randn(x.shape[0]) * noise_variance

t = f(x) + noise

plot the data

In [123]: plt.plot(x, t, 'o', label='y')

plt.xlabel('$x$', fontsize=15)

plt.ylabel('$y$', fontsize=15)

plt.ylim([0,2])

plt.title('inputs (x) vs targets (y)')

plt.grid()

plt.legend(loc=2)

plt.show()

now you want to use the data to make predictions That is, given a novel x that isn’t already
there, what would you predict y to be? We need to model that somehow.
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In [124]: plt.plot(x, t, 'o', label='y')

plt.plot([0, 1], [f(0), f(1)], 'b-', label='f(x)')

plt.xlabel('$x$', fontsize=15)

plt.ylabel('$y$', fontsize=15)

plt.ylim([0,2])

plt.title('inputs (x) vs targets (y)')

plt.grid()

plt.legend(loc=2)

plt.show()

That’s called a linear regression line. How did we come up with that? First, we need to define
what a line is:

1.1.1
y = mx + b

That means we need to find out what m and b are, using the data x and the labels y.

Cost functions: To find the proper values of m and b using the data, we need to define a way to
determine how well some arbitrary values of m and b represent / fit the data. This is what a cost
function is for. In this case, we can calculate the vertical distance (aka the residual) between all of
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the data points and the line and sum up those distances. (This is well known for linear regression;
the cost function is the least squares, or the sum of the squared residuals.)

The goal is to find a line represented by the values m and b such that the sum of the vertical
distances is minimized.

In [125]: def nn(x, w): return x * w

# Define the cost function

def cost(y, t): return ((t - y)**2).sum()

Randomly choose some values for m and b then check against the cost function.

The battle is only part way over: we have to apply our cost function to different values of m
and b and find the best line for the data. The cost function tells us which way we should adjust
m and b. If we range over all possible values for m and b, we can plot the cost.

In [126]: # Plot the cost vs the given weight w (m, in our explanation)

# Define a vector of weights for which we want to plot the cost

ws = numpy.linspace(0, 4, num=100) # weight values

cost_ws = numpy.vectorize(lambda w: cost(nn(x, w) , t))(ws) # cost for each weight in ws

# Plot

plt.plot(ws, cost_ws, 'r-')

plt.xlabel('$m$', fontsize=15)

plt.ylabel('$\\xi$', fontsize=15)

plt.title('cost vs. weight (m)')

plt.grid()

plt.show()
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Range over all possible values of m and calculate the cost (ignore b for the moment). Notice
above that if we plot the cost for a bunch of m values, we can find a value where the cost is at its
lowest.

Here’s another example of a plotted cost function in more dimensions (of course, using differ-
ent data and a different cost function):

How do we get to the minimal point? That lowest point is the best "fit" line for the data.
How do we find that line?

• Option 1: range over all possible values (very, very time consuming)
• Option 2: range until we reach a minimum (okay, but still time consuming, and how do we

know which way to go with m, higher or lower?)
• Option 3: gradient descent

Gradient descent. The gradient is a functional way of representing the increase or decrease in
the magnitude of something. Applied to our cost function, the gradient descent algorithm begins
with some random initial point, computes the cost function, then computes a gradient step by
determining the slope of where the initial point is, then goes in the desired direction; in our case,
down towards a minimum.

In [127]: # define the gradient function. Remember that y = nn(x, w) = x * w

def gradient(w, x, t):

return 2 * x * (nn(x, w) - t)
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nonconvex
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# define the update function delta w

def delta_w(w_k, x, t, learning_rate):

return learning_rate * gradient(w_k, x, t).sum()

# Set the initial weight parameter

w = 0.1

# Set the learning rate

learning_rate = 0.1

# Start performing the gradient descent updates, and print the weights and cost:

nb_of_iterations = 4 # number of gradient descent updates

w_cost = [(w, cost(nn(x, w), t))] # List to store the weight,costs values

for i in range(nb_of_iterations):

dw = delta_w(w, x, t, learning_rate) # Get the delta w update

w = w - dw # Update the current weight parameter

w_cost.append((w, cost(nn(x, w), t))) # Add weight,cost to list

# Print the final w, and cost

for i in range(0, len(w_cost)):

print('m({}): {:.4f} \t cost: {:.4f}'.format(i, w_cost[i][0], w_cost[i][1]))

m(0): 0.1000 cost: 13.6197

m(1): 1.5277 cost: 1.1239

m(2): 1.8505 cost: 0.4853

m(3): 1.9234 cost: 0.4527

m(4): 1.9399 cost: 0.4510

In [128]: # Plot the first 2 gradient descent updates

plt.plot(ws, cost_ws, 'r-') # Plot the error curve

# Plot the updates

for i in range(0, len(w_cost)-2):

w1, c1 = w_cost[i]

w2, c2 = w_cost[i+1]

plt.plot(w1, c1, 'bo')

plt.plot([w1, w2],[c1, c2], 'b-')

plt.text(w1, c1+0.5, '$m({})$'.format(i))

# Show figure

plt.xlabel('$m$', fontsize=15)

plt.ylabel('$\\xi$', fontsize=15)

plt.title('Gradient descent updates plotted on cost function')

plt.grid()

plt.show()
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This is the intuition for a lot of classification approaches in machine learning: define a cost
function then use data and a gradient to determine a best fit of the model (in the linear regression
case, the weight m and the bias term b constitute the model). Machine "learning" often amounts
to minimizing a cost function like this.

A linear regression line doesn’t really help us do classification, however. For classification, we
usually have two different sets of data. We can plot the data like we did before, but instead of
drawing a regression line to fit the data, we want to draw a decision boundary between different
classes in the data.

1.1.2 Example: Iris Dataset

In [40]: data = datasets.load_iris()

X = data.data[:150, :3]

y = data.target[:150]

X_full = data.data[:150, :]

In [41]: setosa = plt.scatter(X[:50,0], X[:50,1], c='b')

versicolor = plt.scatter(X[50:100,0], X[50:100,1], c='r')

virginica = plt.scatter(X[100:150,0], X[100:150,1], c='g')

plt.xlabel("Sepal Length")

plt.ylabel("Sepal Width")

plt.legend((setosa, versicolor, virginica), ("Setosa", "Versicolor", "Virginica"))

sns.despine()
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It’s obvious where the decision boundary should go to separate Setosa from the others, but
it’s harded to separate Versicolor and Virginica from each other. If you were to write a function
yourself, how would you do it? That would be quite challenging.

Let’s use the intuition from linear regression to find a way to draw a decision boundary. Obvi-
ously, we want to draw some kind of line. It would be better if, instead of just drawing a line, we
had some way of saying that a sample fits a certain class in a certain number scale. A very useful
scale is probability space: between 0 and 1. That is, can we use the intuitions of linear regression
to determine if a sample s belongs to class c with some probability? I.e., P(C = c|S = s). There’s
already a classifier that can do this for us: logistic regression.

1.1.3 Logistic Regression

Logistic regression uses the intuitions of linear regression, where we want to fit a line to some
data using a cost function and gradient descent, with the added benefit of being able to return a
probabiliy.

Instead of fitting line to data, we fit the logistic function to the data. Instead of just plotting
data points as usual, imagine putting data points from some class c1 along the 1 line and data
points from a different class c2 along the 0 line.

Here’s the logistic function

• Instead of y = mx + b, we use this.
• The weights determine where it shifts and how stretched it is.
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In [129]: x_values = np.linspace(-5, 5, 100)

y_values = [1 / (1 + math.e**(-x)) for x in x_values]

plt.plot(x_values, y_values)

plt.axhline(.5)

plt.axvline(0)

sns.despine()

In [43]: def logistic_func(theta, x):

return float(1) / (1 + math.e**(-x.dot(theta)))

If we want to follow the intuitions of linear regression, we need to initialize some values (i.e.,
the weights / coefficients), then use gradient descent to minimize the cost function.

In [130]: def log_gradient(theta, x, y):

first_calc = logistic_func(theta, x) - np.squeeze(y)

final_calc = first_calc.T.dot(x)

return final_calc

In [131]: def cost_func(theta, x, y):

'''

computes the cost function; i.e., (for linear regression) minimize the distance between a regression line

and all of the points

'''
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log_func_v = logistic_func(theta,x)

y = np.squeeze(y)

step1 = y * np.log(log_func_v)

step2 = (1-y) * np.log(1 - log_func_v)

final = -step1 - step2

return np.mean(final)

def grad_desc(theta_values, X, y, lr=.001, converge_change=.001):

'''

the hard part of learning: gradient descent. Fortunately, the logistic function is convex --

the derivitive is itself

'''

X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) #normalize

#setup cost iter

cost_iter = []

cost = cost_func(theta_values, X, y)

cost_iter.append([0, cost])

change_cost = 1 # initialize the change in cost to a high value

i = 1

# this actually performs the gradient descent by moving the regression line until the cost change is very small

while(change_cost > converge_change):

old_cost = cost

theta_values = theta_values - (lr * log_gradient(theta_values, X, y)) # the cost change

cost = cost_func(theta_values, X, y)

cost_iter.append([i, cost])

change_cost = old_cost - cost #calculate the change in the cost

i+=1

return theta_values, np.array(cost_iter)

Now we use our data, applied to the logistic, cost, and gradient descent functions, to learn the
weights for the classifier (also knowin as training)

In [46]: shape = X.shape[1]

y_flip = np.logical_not(y.reshape(y.shape[0],1)) #flip Setosa to be 1 and Versicolor to zero to be consistent

betas = np.zeros(shape) #start off with zeros for the coefficients

fitted_values, cost_iter = grad_desc(betas, X, y_flip, lr=.1)

fitted_values

Out[46]: array([-3.91547066, 5.42219164, -6.72251116])

How well did our cost function work?

In [47]: cost_X, cost_y = zip(*cost_iter)

plt.plot(cost_X, cost_y)

Out[47]: [<matplotlib.lines.Line2D at 0x7f122e383c88>]
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How well does our classifier perform on the data?

In [48]: def pred_values(theta, X, hard=True):

'''

predictor values

'''

X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) #normalize

pred_prob = logistic_func(theta, X)

pred_value = np.where(pred_prob >= .5, 1, 0) # note the threshold of 0.5

if hard:

return pred_value

return pred_prob

predicted_y = pred_values(fitted_values, X)

np.sum(y_flip == predicted_y) / 150.0

Out[48]: 83.0

Logistic regression is a very common classifier for machine learning, but it has some limita-
tions. It’s a kind of linear classifier because it learns a linear decision boundary between two
classes.

What if the problem we are trying to solve isn’t linearly separable? One simple example is the
XOR problem.
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1.2 Learning XOR

XOR, "exclusive or" means we have two bits. When both bits are on/off, it evaluates to zero. When
one of the bits are on, then it evaluates to one.

bit 1 bit 2 result

0 0 0
0 1 1
1 0 1
1 1 0

The claim: linear models such as logistic regression cannot learn the xor problem because it’s
not directly linear separable, but, with enough training data, a 2-layer neural network can. We’ll
just see about that.

In [169]: import pandas as pd

import numpy as np

import random

let’s generate some XOR training data

In [182]: m = 10100

X = []

y = []

for i in range(0,m):

y_i = random.randint(0, 1) # randomly choose a label

y.append(y_i)

if y_i == 1: # when y is 1, then pick an input where one of the two bits are on

X.append(random.choice([[1,0],[0,1]]))

else: # otherwise turn both bits on or off

X.append(random.choice([[0,0],[1,1]]))

X[:3], y[:3]

Out[182]: ([[1, 0], [0, 1], [0, 1]], [1, 1, 1])

split the test and train data (not that it matters)

In [183]: Xtrain, Xtest = np.array(X[:-100]), np.array(X[m-100:])

ytrain, ytest = np.array(y[:-100]), np.array(y[m-100:])

Xtrain.shape, ytrain.shape, Xtest.shape, ytest.shape

Out[183]: ((10000, 2), (10000,), (100, 2), (100,))

1.2.1 Try Logistic Regression, a linear clasifier

• we’ll use scikit-learn’s logistic regression classifier
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In [184]: from sklearn import linear_model

from sklearn.metrics import accuracy_score

model = linear_model.LogisticRegression()

model.fit(Xtrain, ytrain)

accuracy_score(model.predict(Xtest), ytest)

Out[184]: 0.49

What happened? It should have learned the function. The problem: XOR is not linearly sep-
arable. Where would a linear classifier like logistic regression draw a line to separate the two
classes? It can’t.

(Image from Goodfellow et al’s, Deep Learning book)

xorplot

1.2.2 Try a simple NN with two layers

• Neural networks are similar (at least in this example) to stacking up logistic regression clas-
sifiers together.

• You have input, hidden layers (with nodes that have activation functions, like the logistic
function) and you have the output
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xorplot

• It isn’t guaranteed to learn the XOR function the first time. You may have to retrain it multi-
ple times. (Why?)

In [188]: from sklearn.neural_network import MLPClassifier

r = 0

while r != 1.0:

model = MLPClassifier(solver='sgd', alpha=1e-5, hidden_layer_sizes=(2, 2))

model.fit(Xtrain, ytrain)

r = accuracy_score(model.predict(Xtest), ytest)

print(r)

0.54

0.46

0.45

0.46

1.0

Why does a NN potentially require multiple tries before it gets it right?
Answer: the gradient isn’t convex. That is, the gradient of the cost function is not a nice

parabola. It has lots of peaks and valleys. Here’s an example:
So a tradeoff is that linear classifiers don’t have the problem of non-convex gradients, but they

also aren’t able to solve many problems. Neural networks are able to solve more complicated,
non-linear problems, but it means that it has to work harder to traverse the gradient.

In [24]: model
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Out[24]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08,

hidden_layer_sizes=(2, 2), learning_rate='constant',

learning_rate_init=0.001, max_iter=200, momentum=0.9,

nesterovs_momentum=True, power_t=0.5, random_state=None,

shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1,

verbose=False, warm_start=False)

From Page 170 in the Deep Learning book (Goodfellow et al., 2017), we have the following
NN that solves the xor problem if we set the weights in the logistic regression classifiers that, put
together, make up a NN:

W =
(

1 1
1 1

)
c =

(
0
−1

)
w =

(
1
−2

)
Can we test that by setting the weights in some logistic regression classifiers ourselves?

In [155]: model_left = linear_model.LogisticRegression() # the bottom left neuron

model_right = linear_model.LogisticRegression() # the bottom right neuron

model_top = linear_model.LogisticRegression() # the top neuron

In [156]: model_left.coef_ = np.array([[1,1]]) # W

model_left.intercept_ = np.array([0]) # bias
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model_left.classes_ = np.array([0,1]) # binary classes

model_right.coef_ = np.array([[1,1]]) # W

model_right.intercept_ = np.array([-1]) # bias

model_right.classes_ = np.array([0,1]) # binary classes

model_top.coef_ = np.array([[1,-2]]) # W

model_top.intercept_ = np.array([0]) # bias

model_top.classes_ = np.array([0,1]) # binary classes

In [157]: lefts = model_left.predict(Xtest)

rights = model_right.predict(Xtest)

accuracy_score(model_top.predict(list(zip(lefts, rights))), ytest)

Out[157]: 1.0

1.2.3 Now let’s try to use the logistic function directly without scikit

• (the logistic function is a kind of sigmoid function, meaning it’s s-shaped)

In [158]: def sigmoid(x):

return 1/(1 + np.exp(-x))

In [159]: lefts = sigmoid(np.array([1,1]).dot(Xtest.T) + np.array([0]))

lefts = 1. * (lefts > 0.5)

rights = sigmoid(np.array([1,1]).dot(Xtest.T) + np.array([-1]))

rights = 1. * (rights > 0.5)

top = sigmoid(np.squeeze(np.array([1,-2]).dot(np.array(list(zip(lefts,rights))).T) + np.array([0])))

top = 1. * (top > 0.5)

accuracy_score(top, ytest)

Out[159]: 1.0

So basically, a neural network is a bunch of linear classifiers put together.

1.2.4 Train a simple NN for XOR

• See post

Instead of giving the weights to a simple neural network, let’s see how a neural network learns
on its own. As before, it will need some kind of model function (in our case, sigmoid), a cost
function, and descend the gradient.

In [160]: # XOR.py-A very simple neural network to do exclusive or.

import numpy as np

epochs = 60000 # Number of iterations

inputLayerSize, hiddenLayerSize, outputLayerSize = 2, 2, 1 # 3 neurons

X = np.array([[0,0], [0,1], [1,0], [1,1]])

Y = np.array([ [0], [1], [1], [0]])

17

http://python3.codes/neural-network-python-part-1-sigmoid-function-gradient-descent-backpropagation/


#print(X.shape, Xtrain.shape, ytrain.shape, Y.shape)

#X=Xtrain

#Y=ytrain.reshape(ytrain.shape[0],1)

def sigmoid (x): return 1/(1 + np.exp(-x)) # activation function

def sigmoid_(x): return x * (1 - x) # derivative of sigmoid

# weights on layer inputs

Wh = np.random.uniform(size=(inputLayerSize, hiddenLayerSize))

#Wh = np.array([[1,1],[1,1]], dtype=np.float64)

Wz = np.random.uniform(size=(hiddenLayerSize,outputLayerSize))

for i in range(epochs):

# forward propogation

H = sigmoid(np.dot(X, Wh)) # hidden layer results

Z = sigmoid(np.dot(H, Wz)) # output layer results

# check for error (cross-entropy)

E = Y - Z # how much we missed (error) # cost function

# backpropogation

dZ = E * sigmoid_(Z) # delta Z

dH = dZ.dot(Wz.T) * sigmoid_(H) # delta H

# update weights

Wz += H.T.dot(dZ)

Wh += X.T.dot(dH)

In [161]: Z = 1. * (Z > 0.5)

accuracy_score(Z,Y)

Out[161]: 1.0

1.2.5 The feed-forward part that does the prediction

In [162]: def predict(Wh, Wz, X):

H = sigmoid(np.dot(X, Wh)) # hidden layer

Z = sigmoid(np.dot(H, Wz)) # top layer

Z = 1. * (Z > 0.5)

return Z

accuracy_score(predict(Wh,Wz,X),Y)

Out[162]: 1.0

In [163]: Wh

Out[163]: array([[0.95607276, 8.44035149],

[0.95607267, 8.44025075]])

In [164]: Wz

Out[164]: array([[-46.61591534],

[ 37.29970264]])
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1.2.6 Conclusion

NNs are classifiers that can learn a functional mapping f from some input data x to some output
a, i.e., a = f (x). They work similarly to other classifiers, except that they can learn functional
mappings with data that is non-linear.

In [ ]:
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