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Abstract
Complex perovskites of the form AB0.5B’0.5X3, where A, B, and B’ are cations and X is
an anion, abound in technological applications. In many cases B and B’ cations
chemically order on crystallographically unique sites, influencing properties and
resulting in a volume shrinkage. In this work, various compounds including
(Ba0.5Sr0.5)(Mg0.5W0.5)O3 and (Sr0.5Ca0.5)(Mg0.5W0.5)O3 as well as several compositions
in the [(Ca, Sr, Ba)1-3xLa2x](Mg0.5W0.5)O3 series were made via conventional
techniques. In particular, the [(Ca, Sr, Ba)1-3xLa2x](Mg0.5W0.5)O3 system allows the
effect of B-site ordering on effective ionic sizes and cell volume to be studied as a
function of A-site size as the host crystal changes from cubic (A=Ba) to tetragonal
(A=Sr) to monoclinic (A=Ca). Data mining was also employed to include the host of
other reported ordered perovskites in a model for the prediction of the effective
change in B-site size, ΔrB, upon ordering. Such a model would allow the prediction of
structures with little or no experimental data, thus eliminating much of the trial and
error and drastically reducing material-development time and costs. The goal of this
project is to establish a generic numerical model for the effective ionic radii and
lattice constants for complex perovskites containing B-site ordering.

Introduction
The term perovskite refers to any compound that shares the structural elements
depicted in Figs. 1-2. Ubic et al.[1] created a model to predict pseudocubic lattice
constants in terms of A-X and B-X bond lengths, 𝑎𝑝𝑐

′ and 𝑎𝑝𝑐
′′ , respectively, which

accounted for point defects within the structure; where 𝑟B, 𝑟𝐴, and 𝑟𝑋′ are the
effective radii size for each A, B, and X-site respectively, and 𝑟X 𝑖𝑑 is the ideal radii

size of the X-site. (Eqns. 1-3) The tolerance factor, 𝑡′, was also redefined in terms of
the conventional Goldschmidt tolerance factor, t, and the ideal ionic radius of the A-
site containing no vacancies (rA(id)0) (Eqn. 5). Later, Tolman et al.[2] proved that layered
A-site ordering causes a volume expansion while rock-salt B-site ordering causes a
volume shrinkage. The former effect has since been quantified by Smith et al.[3] The
goal of this project is to develop a numerical model to quantify the effect of B-site
chemical ordering.

1) 𝑎𝑝𝑐 = 0.7209203 𝑡′ + 1.760998 𝑟B + 𝑟X 𝑖𝑑 + 0.011730139

2) 𝑎𝑝𝑐
′ = 2 𝑟A + 𝑟X′

3) 𝑎′𝑝𝑐
′ = 2 𝑟B + 𝑟X′

4) 𝑟𝑋
′ = 𝑟X 𝑖𝑑 (0.42983 + +0.56696𝑡′)

5) 𝑡′ = 𝐴 + 𝐵𝑡 + 𝐶𝑡2

𝐴 = −50.978 + 84.274𝑟A 𝑖𝑑 0 − 32.411𝑟A 𝑖𝑑 0
2

𝐵 = 130.35 − 205.44𝑟A 𝑖𝑑 0 + 77.539𝑟A 𝑖𝑑 0
2

𝐶 = −81.294 + 124.73𝑟A 𝑖𝑑 0 − 46.185𝑟A 𝑖𝑑 0
2

Figure 1: Archetypical 
perovskite unit cell

Figure 2: Eight perovskite 
unit cells showing corner-

shared octahedra

𝑎𝑝𝑐′′
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Results
X-ray diffraction data show phase pure powders of (Ca1-3xLa2x)(Mg0.5W0.5)O3 x=0.15,
0.2 and (Sr0.5Ca0.5)(Mg0.5W0.5)O3 batches. Refinements of these XRD patterns were
produced and used to obtain lattice parameters of the structure. This information
was added to data from literature and graphed (Fig. 7-9).

Figure 9: Attempt at finding a trend 
within the data, simultaneously 

minimizing errors in 𝑎𝑝𝑐, 𝑎𝑝𝑐
′ and 𝑎𝑝𝑐

′′ , 

where the absolute average relative 
error was no more than 0.33%. 

Empirical Model for ΔrB

Further Studies
It would be useful to re-calcine the (Ba0.5Sr0.5)(Mg0.5W0.5)O3 and
[(Sr, Ba)1-3xLa2x](Mg0.5W0.5)O3 batches in order to improve phase
purity and thereby obtain more data points for the model.

Trends were not found for B-site ordering within the time of this
research experience. Upon further research, perhaps results
similar to those of Smith et al.[5] (Fig. 10) could be produced;
however, other factors may play a role in volume changes upon
ordering and could possibly be used to improve the model.

Figure 10: A-site size adjustment factors as 
functions of composition from experimentally 

collected data for (NayLi1-y)(1-3x)/2La(1+x)/2TiO3 and A-
site order parameter, η, as a function of 

composition.
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Method
Solid-state mixed-oxide methods were used to create batches of
double perovskite oxides. Specifically, (Sr0.5Ca0.5)(Mg0.5W0.5)O3,
(Ba0.5Sr0.5)(Mg0.5W0.5)O3, and [(Ca, Sr, Ba)1-3xLa2x](Mg0.5W0.5)O3

(x=0.1, 0.15, 0.2, 0.25) compositions were made.

Raw powders were milled in deionized water for 4-6 hours (Fig. 3).
Slurries were then dried, crushed, and sieved before being calcined
for 24-30 hours at 850-1200°C (Figs. 4-6). X-ray diffraction (XRD,
Miniflex 600, Rigaku) data were then obtained to verify phase
purity. Data refinement using GSAS II software[4] was used to obtain
lattice parameters. These data, along with data from literature,
were used to create an empirical model. A B-site cation radius
correction term, DrB, was added to the ideal B-site radii in order to
minimize errors in calculated apc values. These correction values
were graphed as functions of apc and t’ to derive the empirical
model sought.

Meas. data:CLMW_x_015_850C_24hrs_12
00C_30hrs

Calcium Magnesium Tungsten Oxide, Ca2 
Mg W O6, 00-048-0108

Lanthanum Magnesium Tungsten Oxide, La
0.67 ( Mg0.5 W0.5 ) O3, 00-033-0706
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Meas. data:CLMW_x_02_850C_24hrs_120
0C_30hrs

Calcium Magnesium Tungsten Oxide, Ca2 
Mg W O6, 00-048-0108

Lanthanum Magnesium Tungsten Oxide, La
0.67 ( Mg0.5 W0.5 ) O3, 00-033-0706
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Figure 3: Mill 
pot on mill

Figure 4: Batches in 
drying oven

Figure 5: 
Crushing and 

sifting powder

Figure 6: Crucible 
in furnace during 
calcining process

Figure 8: (Ca1-3xLa2x)(Mg0.5W0.5)O3 x=0.2 
XRD result

Figure 7: (Ca1-3xLa2x)(Mg0.5W0.5)O3 x=0.15 
XRD result
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