

Transverse Rupture Strength of CeO₂ as a Surrogate Nuclear Fuel Jayson G. Foster¹, Adrianna E. Lupercio², Brian J. Jaques² 1. Dixie State University, St. George, UT 2. Boise State University, Boise, ID

Background

Nuclear Energy

- Currently, 20% of the US energy demand is supported by nuclear energy and is increasing, creating a growing interest in fully understanding the relationship between microstructure and performance of ceramic nuclear fuels¹.
- Plutonia (PuO₂), recovered as a by-product from the fission of uranium, is of particular interest.
- Because of significant challenges involved in studying radioactive materials, cerium oxide (CeO₂) is being investigated as a surrogate nuclear fuel for PuO_2 due to having similar chemical and thermodynamic properties².

Figure 1. Cerium oxide has the same crystal structure as plutonium oxide, which is an Fm3m fluorite structure³.

Surrogate Nuclear Fuel Study of CeO₂

- Mechanical properties of CeO₂ were studied through developing and validating a testing method for testing its flexural strength.
- Test method was validated using commercially available alumina (Al₂O₃), with known properties, as a benchmark.
- CeO₂ pellets were fabricated and characterized prior to measuring flexural strength.

Methods

CeO₂ Pellet Synthesis

- Materion (-325 mesh) CeO₂ powder was high energy ball milled to reduce particle size and improve pellet density.
- CeO₂ powder and EBS binder were mixed and green pellets were pressed at 100 MPa and sintered at 1600 °C.
- CeO₂ powder and pellets were characterized via scanning electron microscopy (SEM), x-ray diffraction (XRD) and particle size analysis (PSA).
- Sintered pellets were ground down to 169 μ " and 11 μ " surface roughness.
- CeO_2 and Al_2O_3 were tested using the test fixture and Materials Test System 810 in Figure 7.

Al₂O₃ Benchmark Preparation

99.8% purity Al₂O₃ rods (Figure 5) were cut at 1.5, 2.25, and 3 mm heights and ground down to 169 μ " and 11 μ " surface roughness.

1. Kim, H. S., et al. Applicability of CeO₂ as a surrogate for PuO₂ in a MOX fuel development. Journal of Nuclear Materials 378.1 2008, 98-104. 2. Nelson, A., et al. An evaluation of the thermophysical properties of stoichiometric CeO₂ in comparison to UO₂ and PuO₂. Journal of the American Ceramic Society 97.11 2014, 3652-3659. 3. Adnan, Y., et al. Cerium oxide nanostructures and their applications, functionalized nanomaterials [Online] 2016, https://www.intechopen.com/books/functionalized-nanomaterials/cerium-oxidenanostructures-and-their-applications (accessed July 19, 2018).

References

4. Khaleghi, E., et al. Spark plasma sintering of tantalum carbide. *Scripta Materialia* 63.6 **2010,** 577-580. 5. CoorsTek, "Ceramic Properties Standard," AD-998 EBM chemistry data sheet, 2013

6. Dunwoody, J.T., Nelson, A.T. Cerium Dioxide Pellet Fabrication and Characterization. MST-7 Los Alamos National Lab 2017. 7. CoorsTek, "Durable Tungsten Carbide for Extreme Service Applications," materials data sheet, 2017.

S							
$\sigma = A = effecti$ $F = force applie$ $t = p$			$\sigma = \frac{A * H}{t^2}$ Contractive stress plied to pell pellet radiu	ture Strength Equation $= \frac{A * F}{t^2}$ Every stress volume ied to pellet at failure bellet radius se rupture strength ⁶		Transverse Rup $A = \frac{3}{4 * \pi} * [(2 * 4) + \frac{3}{4 * \pi}]$ Test Sample v_S : 0.21 alumina Test Fixture v_B : 0.21 (tungsten) <i>E</i> : 600 GPa (tungster)	
Figure	SEM ima	ge of alumin	100 μm	I_{12} Is mm Figure 10. Fractured Al_2O_3 pellet.	2 1 [(⁴ -1)/[-1 -2 -3	y	
lumber	Density	Surface	TD %	Flexural	-4 [_] 3	-4 3	
of Tests 6	3.87	Roughness 169 μ"	98.8 ± 0.2	Strength (MPa) 363-448	Figure	16. Weibull	
6	g/cm ³ 3.87 g/cm ³	109 μ 11 μ"	98.8 ± 0.2	341-419	• Grain	of Micron size, dens	
-	-	ellet data tab vided by the v		cal density based	and • Ceria of ~2 • Pelle dens • The dem	, high V onstrates t	
100 μm Figure 13. SEM image of ceria fracture surface.						 Further validation zirconia and yttic 	
Sintered Density	d Grain Siz	Surface	тр %	Flexural Strength (MPa)		nogravime	
6.83 g/cm ³	28 μm ±		95.8 ±2	40.5-132	Conclu • Alum	i sions nina flexura	
6.83 g/cm ³	28 μm ±2 pellet dat	a table. Th	95.8 ±2 eoretical de	41.7-248 nsity based on	• Flexu heig	oull module aral strengt ht to diame oull module	
008, 98-104			The aut	Ac thor would like to	knowle o acknowle		

The author would like to acknowledge Yaiza Rodriguez, Luke Schoensee, and the AML for their contributions. This work was partially funded through the U.S. Department of Energy in collaboration with the Idaho National Laboratory in the In-Pile Instrumentation Initiative. Additional support provided by the National Science Foundation via the REU Site: Materials for Society at Boise State University (DMR 1658076).

Discussion

pture Strength

In σ (MPa)

Ill plots of the flexural strength data of alumina and ceria.

rostructure

- nsity, porosity, bulk/surface defects, oughness affect flexural strength nodulus.
- ad an average grain size (Figure 17)
- n average of 95.8% ±2 theoretical
- Weibull modulus for alumina the validity of the MTS-TRS set up.

Figure 17. SEM of CeO₂ grains.

- size for comparison to literature and ceria. tion tests for the TRS set up using magnesia partially-stabilized tria stabilized zirconia as benchmarks.
- etric analysis to address delamination and stoichiometry issues
- ral strength is comparable to literature values⁵, 375 ± 54 MPa.
- lus for alumina supports the MTS-TRS setup.
- gth for ceria was improved with a finer surface finish and greater neter ratio.
- lus for ceria can be improved by microstructure refinement.

nents

