

BOISE STATE UNIVERSITY

COLLEGE OF ENGINEERING Micron School of Materials Science and Engineering

Additive Manufacturing of Magnetostrictive Cobalt Ferrite Thin Films for Structural Energy Harvesting

Kailev Blair¹, Zhangxian (Dan) Deng, Ph.D² ¹University of Pennsylvania, Department of Materials Science and Engineering ²Boise State University, Department of Mechanical and Biomedical Engineering

Results and Conclusions

Particle Description	Uncoated	Stearic Acid Coated	Stearic Acid Coated
Solvents	Isopropyl alcohol, ethylene glycol, glycerol	Isopropyl alcohol, ethylene glycol, glycerol	DI water, ethylene glycol
Particle Treatment	none	none	Ball milled: 300rpm, 1:20 ratio, 1.33hrs
Ink Treatment	Probe tip sonication (~5.5hrs, 95% amp)	Probe tip sonication (~5.5hrs, 95% amp)	Shear mixed (~4hrs) Probe tip sonication (4hrs, 95% amp)
Visual Observations	Well mixed ink	separated	Dispersed in solvent, visible agglomerations
DLS (approx. size)	~1400nm	~1100nm	~450nm

DLS of Stearic Acid Coated

Cobalt Ferrite Nanoparticles

Particle Size (nm) Figure 5: DLS data of stearic acid coated Cobal

As-received

particle

Cobalt Ferrite nanonarticles

Ball mille particles

Ferrite nanoparticles

Intensity (a.u.)

Figure 4: TEM image of ball milled stearic acid coated Cobalt Ferrite nanoparticles

- · Ball milling is a promising technique for reducing size of stearic acid coated particles.
- The stable suspensions synthesized have large agglomerations, but may be viable using N-script.

Introduction and Motivation

Structural vibration energy

harvesters can replace finite power sources in portable and

Traditional lithium ion batteries frequently need to be charged or replaced.

wearable electronic devices.

Background

Magnetostrictive materials convert mechanical energy into magnetic energy and vice versa.

Additive manufacturing can be used to make thin films of this material for flexible energy harvesting devices.

First functional **ink** can convert structural vibrations into electricity.

Take a picture to view more information.

Future Work

Effects on nagnetostrictive properties

References

Additive

Manufacturing

Deng, Z., & Dapino, M. J. (2017). Review of magnetostrictive vibration energy harvesters. Smart Mater. Struct. 26 103001 Deng, Z., & Dapino, M. J. (2016). Influence of electrical impedance and mechanical bistability on Galfenol-based unimorph

Aerosol Jet Printing

sters. Journal of Intelligent Material Systems and Structures, 1045389X16666176

Acknowledgements We would like to acknowledge Nick McKibben and Josh Eixenberger for their invaluable assistance, Dr. David Estrada for the use of his lab, and Kolin Hawkins for providing TEM images